Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
KAUFMANN, D. KOZOVSKÝ, M. WOTAWA, F.
Originální název
Simulation-Based Diagnosis for Cyber-Physical Systems - A General Approach and Case Study on a Dual Three-Phase E-Machine
Typ
článek ve sborníku ve WoS nebo Scopus
Jazyk
angličtina
Originální abstrakt
This paper presents a simulation-based approach for fault diagnosis in cyber-physical systems. We utilize simulation models to generate training data for machine learning classifiers to detect faults and identify the root cause. The presented processing pipeline includes simulation model validation, training data generation, data preprocessing, and the implementation of a diagnosis method. A case study with a dual three-phase e-machine highlights the results and challenges of the simulation-based diagnosis approach. The e-machine simulation model provides a complex and robust system representation, including the capability to inject inter-turn short-circuit faults. The introduced validation procedures of the simulation model revealed limitations in signal similarity and distinguishability compared to real system behavior. Based on the discovered limitations, the overall best results are achieved by applying an Autoencoder model for anomaly detection, followed by a Random Forest classifier to identify the specific anomalies. Further, the focus is on identifying the affected e-machine phase rather than the exact number of faulty winding turns. The paper shows the challenges when applying a simulation-based diagnosis approach to time-series data and underlines the required analysis of simulation models. In addition, the flexible adaption in the diagnosis strategies enhances the efficient utilization of cyber-physical system models in fault diagnosis and root cause identification.
Klíčová slova
Cyber-Physical System, Fault diagnosis, Root cause analysis, Simulation-Based Diagnosis, Machine Learning, Artificial Neural Networks
Autoři
KAUFMANN, D.; KOZOVSKÝ, M.; WOTAWA, F.
Vydáno
26. 11. 2024
Nakladatel
Schloss Dagstuhl – Leibniz-Zentrum für Informatik
ISBN
978-3-95977-356-0
Kniha
35th International Conference on Principles of Diagnosis and Resilient Systems (DX 2024)
ISSN
2190-6807
Periodikum
OpenAccess Series in Informatics (OASIcs)
Ročník
125
Číslo
18
Stát
Spolková republika Německo
Strany od
18:1
Strany do
18:21
Strany počet
21
URL
https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.DX.2024.18