Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
KIČMEROVÁ, D. PROVAZNÍK, I.
Originální název
ECG classification using neural networks and McSharry model
Typ
článek ve sborníku ve WoS nebo Scopus
Jazyk
angličtina
Originální abstrakt
The presented work is focused on modelling of arrhythmias using McSharry model followed by classification using an artificial neural network. The proposed method uses preprocessing of signals with Linear Approximation Distance Thresholding method and Line Segment Clustering method for establishing of initial parameters of McSharry model. The ECG data was taken from standard MIT/BIH arrhythmia database. Multilayer perceptron was used with classification accuracy of 90.1% for distinguishing of premature ventricular contraction and normal beat.
Klíčová slova
ECG, McSharry model, neural networks
Autoři
KIČMEROVÁ, D.; PROVAZNÍK, I.
Rok RIV
2007
Vydáno
22. 8. 2007
Nakladatel
IEEE
Místo
Brno
ISBN
978-80-214-3409-7
Kniha
Proceedings of 5th IEEE Workshop Zvule
Strany od
1
Strany do
Strany počet
BibTex
@inproceedings{BUT22837, author="Dina {Kičmerová} and Valentine {Provazník}", title="ECG classification using neural networks and McSharry model", booktitle="Proceedings of 5th IEEE Workshop Zvule", year="2007", pages="1--1", publisher="IEEE", address="Brno", isbn="978-80-214-3409-7" }