Detail publikace

What else is decidable about integer arrays?

HABERMEHL, P. IOSIF, R. VOJNAR, T.

Originální název

What else is decidable about integer arrays?

Typ

článek ve sborníku mimo WoS a Scopus

Jazyk

angličtina

Originální abstrakt

We introduce a new decidable logic for reasoning about infinite arrays of integers. The logic is in the $\exists^* \forall^*$ first-order fragment and allows (1) Presburger constraints on existentially quantified variables, (2) difference constraints as well as periodicity constraints on universally quantified indices, and (3) difference constraints on values. In particular, using our logic, one can express constraints on consecutive elements of arrays (e.g., $\forall i ~.~ 0 \leq i < n \rightarrow a[i+1]=a[i]-1$) as well as periodic facts (e.g., $\forall i ~.~ i \equiv_2 0 \rightarrow a[i] = 0$). The decision procedure follows the automata-theoretic approach: we translate formulae into a special class of B\"uchi counter automata such that any model of a formula corresponds to an accepting run of an automaton, and vice versa. The emptiness problem for this class of counter automata is shown to be decidable as a consequence of earlier results on counter automata with a flat control structure and transitions based on difference constraints.

Klíčová slova

mathematical logic, arrays, decidability, decision procedure, formal verification, automata

Autoři

HABERMEHL, P.; IOSIF, R.; VOJNAR, T.

Rok RIV

2008

Vydáno

10. 3. 2008

Nakladatel

Springer Verlag

Místo

Berlin

ISBN

978-3-540-78497-5

Kniha

Foundations of Software Science and Computation Structures

Edice

Lecture Notes in Computer Science

Strany od

475

Strany do

490

Strany počet

16

BibTex

@inproceedings{BUT30752,
  author="Peter {Habermehl} and Iosif {Radu} and Tomáš {Vojnar}",
  title="What else is decidable about integer arrays?",
  booktitle="Foundations of Software Science and Computation Structures",
  year="2008",
  series="Lecture Notes in Computer Science",
  volume="4962",
  pages="475--490",
  publisher="Springer Verlag",
  address="Berlin",
  isbn="978-3-540-78497-5"
}