Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
BENITEZ, C., BURGET, L., CHEN, B., DUPONT, S., GARUDADRI, H., HERMANSKY, H., JAIN, P., KAJAREKAR, S., MORGAN, N., SIVADAS, S.
Originální název
Robust ASR front-end using spectral-based and discriminant features: experiments on Aurora tasks
Typ
článek ve sborníku ve WoS nebo Scopus
Jazyk
angličtina
Originální abstrakt
This paper describes an automatic speech recognition front-end that combines low-level robust ASR feature extraction tech-niques, and higher-level linear and non-linear feature transformations. The low-level algorithms use data-derived filters, mean and variance normalization of the feature vectors, and dropping of noise frames. The feature vectors are then linearly transformed using Principal Components Analysis (PCA). An Artificial Neural Network (ANN) is also used to compute features that are useful for classification of speech sounds. It is trained for phoneme probability estimation on a large corpus of noisy speech. These transformations lead to two feature streams whose vectors are concatenated and then used for speech recognition. This method was tested on the set of speech corpora used for the "Aurora" evaluation. Using the feature stream generated without the ANN yields an overall 41% reduction of the error rate over Mel-Frequency Cepstral Coefficients (MFCC) reference features. Adding the ANN stream further reduces the error rate yielding a 46% reduction over the reference features.
Klíčová slova v angličtině
speech recognition, Aurora task
Autoři
Rok RIV
2001
Vydáno
1. 1. 2001
Místo
Aalborg
ISBN
87-90834-09-7
Kniha
Proc. EUROSPEECH
Strany od
429
Strany do
432
Strany počet
4
BibTex
@{BUT70103 }