Detail publikace

Homogenization of scalar wave equations with hysteresis

FRANCŮ, J. KREJČÍ, P.

Originální název

Homogenization of scalar wave equations with hysteresis

Typ

článek v časopise - ostatní, Jost

Jazyk

angličtina

Originální abstrakt

The paper deals with a scalar wave equation of the form $\rho u_{tt} = (F[u_x])_x + f$ where $F$ is a Prandtl-Ishlinskii operator and $\rho, f$ are given functions. This equation describes longitudinal vibrations of an elastoplastic rod. The mass density $\rho$ and the Prandtl-Ishlinskii distribution function $\eta$ are allowed to depend on the space variable $x$. We prove existence, uniqueness and regularity of solution to a corresponding initial-boundary value problem. The system is then homogenized by considering a sequence of equations of the above type with spatially periodic data $\rho^\eps$ and $\eta^\eps$, where the spatial period $\eps$ tends to $0$. We identify the homogenized limits $\rho^*$ and $\eta^*$ and prove the convergence of solutions $u^\e$ to the solution $u^*$ of the homogenized equation.

Klíčová slova

scalar wave equation, homogenization, hysteresis operator

Autoři

FRANCŮ, J.; KREJČÍ, P.

Rok RIV

1999

Vydáno

1. 1. 1999

ISSN

0935-1175

Periodikum

Continuum Mech Therm

Ročník

11

Číslo

6

Stát

Spojené státy americké

Strany od

371

Strany do

390

Strany počet

21

BibTex

@article{BUT37538,
  author="Jan {Franců} and Pavel {Krejčí}",
  title="Homogenization of scalar wave equations with hysteresis",
  journal="Continuum Mech Therm",
  year="1999",
  volume="11",
  number="6",
  pages="371--390",
  issn="0935-1175"
}