Detail publikace

On the problem of weak reflectines in compact spaces

KOVÁR, M.

Originální název

On the problem of weak reflectines in compact spaces

Typ

článek v časopise - ostatní, Jost

Jazyk

angličtina

Originální abstrakt

In this paper we present, among others, an improvement of Hu\v sek's characterizeation of the spaces with the weak compact reflection. Our main results are as follows: A topological space has a weak reflection in compact spaces if{}f the Wallman remainder is finite. If a $\theta$-regular or $T_1$ space has a weak compact reflection, then the space is countably compact. A noncompact $\theta$-regular or $T_1$ space which is weakly $\left[\omega_1,\infty\right)^r$-refinable, has no weak reflection in compact spaces.

Klíčová slova

weak reflection, Wallman compactification, filter (base), $\theta$-regul\-arity, weak $\left[\omega_1,\infty\right)^r$-refinability,

Autoři

KOVÁR, M.

Rok RIV

1996

Vydáno

1. 1. 1996

ISSN

0077-8923

Periodikum

Annals of the New York Academy of Sciences,vol 788

Ročník

1996

Číslo

1

Stát

Spojené státy americké

Strany od

160

Strany do

163

Strany počet

4

BibTex

@article{BUT38266,
  author="Martin {Kovár}",
  title="On the problem of weak reflectines in compact spaces",
  journal="Annals of the New York Academy of Sciences,vol 788",
  year="1996",
  volume="1996",
  number="1",
  pages="4",
  issn="0077-8923"
}