Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
KHAN, M., ŽÁK, L., ONDRŮŠEK, Č.
Originální název
FUZZY-NEURAL NETWORK BASED SHORT-TERM SEASONAL AND AVERAGE LOAD FORECASTING
Typ
článek ve sborníku ve WoS nebo Scopus
Jazyk
angličtina
Originální abstrakt
A hybrid approach utilizing a fuzzy system and artificial neural network for short-term average and seasonal load prediction is proposed for the Czech Electric Power Utility (ČEZ), Czech Republic in this paper. The FNN is trained on real data and evaluated for forecasting seasonal and average load profiles based on forecast weather data. The fuzzy membership values of the load and weather variables are the inputs to the hybrid fuzzy-neural network (FNN) and the output is the predicted load. The performance of this network has been compared with ANN technique in order to demonstrate the superiority of this approach.
Klíčová slova v angličtině
Hybrid fuzzy-neural network (FNN), Short-term average and seasonal load forecasting, artificial neural networks (ANN).
Autoři
Rok RIV
2001
Vydáno
25. 9. 2001
Nakladatel
n
Místo
Zlín
ISBN
80-7318-030-8
Kniha
4th International Conference on Prediction and Nonlinear Dynamics, Nostradamus Prediction Conference
Strany od
13
Strany do
Strany počet
1
BibTex
@inproceedings{BUT3902, author="Muhammad R {Khan} and Libor {Žák} and Čestmír {Ondrůšek}", title="FUZZY-NEURAL NETWORK BASED SHORT-TERM SEASONAL AND AVERAGE LOAD FORECASTING", booktitle="4th International Conference on Prediction and Nonlinear Dynamics, Nostradamus Prediction Conference", year="2001", pages="1", publisher="n", address="Zlín", isbn="80-7318-030-8" }