Detail publikace

Semiregular finite elements in solving some nonlinear problem

ZLÁMALOVÁ, J.

Originální název

Semiregular finite elements in solving some nonlinear problem

Typ

článek v časopise - ostatní, Jost

Jazyk

angličtina

Originální abstrakt

The finite element analysis of the variational problem which is formally equivalent to a two-dimensional nonlinear elliptic boundary value problem with mixed nonhomogeneous boundary conditions. The given problem is solved in the case of a bounded domain whose boundary consists of two circles with the same centre. Difference between the radii of circles is very small with respect to radidus. An elliptic problem given on such a domain has many practical applications (let us mention, for example, the cartilage between a joint and hip, or an air-crevice between a rotor and stator in an electromachine). The finite element analysis of this problem is restricted to the case of semiregular triangular finite elements with polynomials of the first degree.

Klíčová slova

finite element method, semiregular elements

Autoři

ZLÁMALOVÁ, J.

Vydáno

1. 1. 2001

ISSN

0862-7940

Periodikum

APPLICATIONS OF MATHEMATICS

Ročník

46

Číslo

1

Stát

Česká republika

Strany od

53

Strany do

77

Strany počet

24

BibTex

@article{BUT42418,
  author="Jana {Hoderová}",
  title="Semiregular finite elements in solving some nonlinear problem",
  journal="APPLICATIONS OF MATHEMATICS",
  year="2001",
  volume="46",
  number="1",
  pages="53--77",
  issn="0862-7940"
}