Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
PŘIBYL, O.
Originální název
Solutions of singular antiperiodic boundary value problems
Typ
článek v časopise - ostatní, Jost
Jazyk
angličtina
Originální abstrakt
Sufficient conditions for the existence of a solution of the equation $$\Big (g(x'(t)) \Big )'=f\Big (t,x(t),x'(t)\Big)$$ with the antiperiodic conditions \mbox{$x(0)+x(T)=0$}, \mbox{$x'(0)+x'(T)=0$} are established. Our nonlinearity $f$ may be singular at its phase variables. The~proofs are based on a~combination of regularity and sequential techniques and use the~topological transversality principle.
Klíčová slova
singular second-order differential equation, g-Laplacian, antiperiodic boundary conditions, topological transversality principle
Autoři
Vydáno
10. 6. 2005
ISSN
1586-8850
Periodikum
Miskolc Mathematical Notes
Ročník
6
Číslo
1
Stát
Maďarsko
Strany od
47
Strany do
64
Strany počet
18
BibTex
@article{BUT46132, author="Oto {Přibyl}", title="Solutions of singular antiperiodic boundary value problems", journal="Miskolc Mathematical Notes", year="2005", volume="6", number="1", pages="47--64", issn="1586-8850" }