Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
KOVÁR, M.
Originální název
On iterated dualizations of topological spaces and structures
Typ
článek ve sborníku ve WoS nebo Scopus
Jazyk
angličtina
Originální abstrakt
Recall that a topology $\tau^d$ is said to be dual with respect to the topology $\tau$ on a set $X$ if $\tau^d$ has a closed base consisted of the compact saturated sets in $\tau$. In the well-known book{\it Open Problems in Topology}, edited by J. van Mill and G. M. Reed, there was stated (among many others, no less interesting problems) a problem no. 540 of J. D. Lawson and M. Mislove: {\it Does the process of iterating duals of a topology terminate by two topologies, dual to each other (1990, \cite{LM})?} In this paper we will present some recent results related to iterated dualizations of topological spaces (one of them yields the above mentioned identity $\tau^{dd}=\tau^{dddd}$ as an immediate consequence), ask what happens with the dualizations if we leave the realm of spatiality and mention some unsolved problems related to dual topologies.
Klíčová slova v angličtině
compact saturated set, dual topology, topological system, frame, locale, directly complete semilattice
Autoři
Rok RIV
2002
Vydáno
3. 5. 2002
Nakladatel
City College, City University of New York
Místo
New York, Spojené státy americké
Strany od
11
Strany do
12
Strany počet
2
BibTex
@inproceedings{BUT5184, author="Martin {Kovár}", title="On iterated dualizations of topological spaces and structures", booktitle="Abstracts of the Workshop on Topology in Computer Science", year="2002", number="1", pages="2", publisher="City College, City University of New York", address="New York, Spojené státy americké" }