Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
SCHWARZ, J. JAROŠ, J.
Originální název
Parallel Bivariate Marginal Distribution Algorithm with Probability Model Migration
Typ
kapitola v knize
Jazyk
angličtina
Originální abstrakt
This chapter presents a new concept of parallel Bivariate Marginal Distribution Algorithm (BMDA) using the stepping stone communication model with the unidirectional ring topology. The traditional migration of individuals is compared with a newly proposed technique of probability model migration. The idea of the new adaptive BMDA (aBMDA) algorithms is to modify the classic learning of the probability model (applied in the sequential BMDA). In the proposed strategy, the adap-tive learning of the resident probability model is used. The evaluation of pair dependency, using Pearson's chi-square statistics is influenced by the relevant immigrant pair dependency according to the quality of resident and immigrant subpopulation. Experimental results show that the proposed aBMDA significantly outperforms the traditional concept of migration of individuals.
Klíčová slova
BMDA, Model migration, parallel architectures
Autoři
SCHWARZ, J.; JAROŠ, J.
Rok RIV
2008
Vydáno
10. 9. 2008
Nakladatel
Springer Verlag
Místo
Berlin / Heidelberg
ISBN
978-3-540-85067-0
Kniha
Linkage in Evolutionary Computation
Edice
LNSC, Studies in Computational Intelligence Vol. 157
Strany od
3
Strany do
23
Strany počet
21
URL
https://www.fit.vut.cz/research/publication/8773/
BibTex
@inbook{BUT55784, author="Josef {Schwarz} and Jiří {Jaroš}", title="Parallel Bivariate Marginal Distribution Algorithm with Probability Model Migration", booktitle="Linkage in Evolutionary Computation", year="2008", publisher="Springer Verlag", address="Berlin / Heidelberg", series="LNSC, Studies in Computational Intelligence Vol. 157", pages="3--23", isbn="978-3-540-85067-0", url="https://www.fit.vut.cz/research/publication/8773/" }