Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
BOICHUK, A. DIBLÍK, J. KHUSAINOV, D. RŮŽIČKOVÁ, M.
Originální název
Boundary-value problems for weakly nonlinear delay differential systems
Typ
článek v časopise - ostatní, Jost
Jazyk
angličtina
Originální abstrakt
Conditions are derived of the existence of solutions of nonlinear boundary-value problems for systems of $n$ ordinary differential equations with constant coefficients and single delay (in the linear part) and with a finite number of measurable delays of argument in nonlinearity. The use of a delayed matrix exponential and a method of pseudo-inverse by Moore-Penrose matrices led to an explicit and analytical form of sufficient conditions for the existence of solutions in a given space and, moreover, to the construction of an iterative process for finding the solutions of such problems in a general case when the number of boundary conditions does not coincide with the number of unknowns in the differential system with a single delay.
Klíčová slova
Boundary-value problem; r weakly nonlinear delay differential system.
Autoři
BOICHUK, A.; DIBLÍK, J.; KHUSAINOV, D.; RŮŽIČKOVÁ, M.
Rok RIV
2011
Vydáno
1. 8. 2011
ISSN
1085-3375
Periodikum
Abstract and Applied Analysis
Ročník
Číslo
1
Stát
Spojené státy americké
Strany od
Strany do
19
Strany počet
BibTex
@article{BUT72868, author="Alexander {Boichuk} and Josef {Diblík} and Denys {Khusainov} and Miroslava {Růžičková}", title="Boundary-value problems for weakly nonlinear delay differential systems", journal="Abstract and Applied Analysis", year="2011", volume="2011", number="1", pages="1--19", issn="1085-3375" }