Detail publikace

Weighted asymptotically periodic solutions of linear volterra difference equations

DIBLÍK, J. RŮŽIČKOVÁ, M. SCHMEIDEL, E. ZBASZYNIAK, M.

Originální název

Weighted asymptotically periodic solutions of linear volterra difference equations

Typ

článek v časopise - ostatní, Jost

Jazyk

angličtina

Originální abstrakt

A linear Volterra difference equation of the form $$ x(n+1)=a(n)+b(n)x(n)+\sum\limits^{n}_{i=0}K(n,i)x(i) $$ where $x\colon\bN_0\to\bR$, $a\colon \bN_0\to\bR$, $K\colon\bN_0\times\bN_0\to \bR$ and $b\colon\bN_0 \to \bR\setminus\{0\}$ is $\omega$-periodic is considered. Sufficient conditions for the existence of weighted asymptotically periodic solutions of this equation are obtained. Unlike previous investigations, no restriction on $\prod_{j=0}^{\omega-1}b(j)$ is assumed. The results generalize some of the recent results.

Klíčová slova

Linear Volterra difference equation, weighted asymptotically periodic solution

Autoři

DIBLÍK, J.; RŮŽIČKOVÁ, M.; SCHMEIDEL, E.; ZBASZYNIAK, M.

Rok RIV

2011

Vydáno

3. 8. 2011

ISSN

1085-3375

Periodikum

Abstract and Applied Analysis

Ročník

2011

Číslo

1

Stát

Spojené státy americké

Strany od

1

Strany do

14

Strany počet

14

BibTex

@article{BUT72873,
  author="Josef {Diblík} and Miroslava {Růžičková} and Ewa {Schmeidel} and Malgorzata {Zbaszyniak}",
  title="Weighted asymptotically periodic solutions of linear volterra difference equations",
  journal="Abstract and Applied Analysis",
  year="2011",
  volume="2011",
  number="1",
  pages="1--14",
  issn="1085-3375"
}