Detail publikace

Oscillation of solution of a linear third-order discrete delayed equation

DIBLÍK, J. BAŠTINCOVÁ, A. BAŠTINEC, J.

Originální název

Oscillation of solution of a linear third-order discrete delayed equation

Typ

článek ve sborníku ve WoS nebo Scopus

Jazyk

angličtina

Originální abstrakt

A linear third-order discrete delayed equation $Delta x(n)=-p(n)x(n-2)$ with a positive coefficient $p$ is considered for $n$ going to $\infty$. This equation is known to have a positive solution if $p$ fulfils an inequality. The goal of the paper is to show that, in the case of the opposite inequality for $p$, all solutions of the equation considered are oscillating for $n$ tending to $\infty$.

Klíčová slova

Discrete delayed equation, oscillating solution, positive solution, asymptotic behavior.

Autoři

DIBLÍK, J.; BAŠTINCOVÁ, A.; BAŠTINEC, J.

Rok RIV

2011

Vydáno

24. 10. 2011

Nakladatel

EPI

Místo

Kunovice

ISBN

978-80-7314-221-6

Kniha

NINTH INTERNATIONAL CONFERENCE ON SOFT COMPUTING APPLIED IN COMPUTER AND ECONOMIC ENVIRONMENTS, ICSC 2011

Strany od

95

Strany do

101

Strany počet

7

BibTex

@inproceedings{BUT74172,
  author="Josef {Diblík} and Alena {Baštincová} and Jaromír {Baštinec}",
  title="Oscillation of solution of a linear third-order discrete delayed equation",
  booktitle="NINTH INTERNATIONAL CONFERENCE ON SOFT COMPUTING APPLIED IN COMPUTER AND ECONOMIC ENVIRONMENTS, ICSC 2011",
  year="2011",
  pages="95--101",
  publisher="EPI",
  address="Kunovice",
  isbn="978-80-7314-221-6"
}