Detail publikace

Countable extensions of the Gaussian complex plane determineted by the simplest quadratic polynomial.

CHVALINA, J. BAŠTINEC, J.

Originální název

Countable extensions of the Gaussian complex plane determineted by the simplest quadratic polynomial.

Typ

článek ve sborníku ve WoS nebo Scopus

Jazyk

angličtina

Originální abstrakt

There is solved a certain modified problem motivated by the Einsteins special relativity theory - usually called the problem of a realization of structures. In particular it is show that for any topology on the Gaussian plane of all complex numbers monoids of all continuous closed complex functions and centralizers of Douady-Hubbard quadratic polynomials are different. There are also constructed various extensions of the complex plane allowing the above mentioned realization for centralizers of extended simple quadratic function in the complex domain.

Klíčová slova

Gaussian plane of complex numbers, continuous closed complex functions, Douady-Hubbard polynomials, topology on Gaussian plane.

Autoři

CHVALINA, J.; BAŠTINEC, J.

Rok RIV

2011

Vydáno

29. 1. 2011

Nakladatel

EPI Kunovice

Místo

Kunovice

ISBN

978-80-7314-221-6

Kniha

Proc. Ninth Inernat. Conference on Soft Computing Applied in Computer and Economic Enviroments (ISIC 2011)

Strany od

103

Strany do

113

Strany počet

11

BibTex

@inproceedings{BUT75882,
  author="Jan {Chvalina} and Jaromír {Baštinec}",
  title="Countable extensions of the Gaussian complex plane determineted by the simplest quadratic polynomial.",
  booktitle="Proc. Ninth Inernat. Conference on Soft Computing Applied in Computer and Economic Enviroments (ISIC 2011)",
  year="2011",
  pages="103--113",
  publisher="EPI Kunovice",
  address="Kunovice",
  isbn="978-80-7314-221-6"
}