Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
CHVALINA, J. BAŠTINEC, J.
Originální název
Countable extensions of the Gaussian complex plane determineted by the simplest quadratic polynomial.
Typ
článek ve sborníku ve WoS nebo Scopus
Jazyk
angličtina
Originální abstrakt
There is solved a certain modified problem motivated by the Einsteins special relativity theory - usually called the problem of a realization of structures. In particular it is show that for any topology on the Gaussian plane of all complex numbers monoids of all continuous closed complex functions and centralizers of Douady-Hubbard quadratic polynomials are different. There are also constructed various extensions of the complex plane allowing the above mentioned realization for centralizers of extended simple quadratic function in the complex domain.
Klíčová slova
Gaussian plane of complex numbers, continuous closed complex functions, Douady-Hubbard polynomials, topology on Gaussian plane.
Autoři
CHVALINA, J.; BAŠTINEC, J.
Rok RIV
2011
Vydáno
29. 1. 2011
Nakladatel
EPI Kunovice
Místo
Kunovice
ISBN
978-80-7314-221-6
Kniha
Proc. Ninth Inernat. Conference on Soft Computing Applied in Computer and Economic Enviroments (ISIC 2011)
Strany od
103
Strany do
113
Strany počet
11
BibTex
@inproceedings{BUT75882, author="Jan {Chvalina} and Jaromír {Baštinec}", title="Countable extensions of the Gaussian complex plane determineted by the simplest quadratic polynomial.", booktitle="Proc. Ninth Inernat. Conference on Soft Computing Applied in Computer and Economic Enviroments (ISIC 2011)", year="2011", pages="103--113", publisher="EPI Kunovice", address="Kunovice", isbn="978-80-7314-221-6" }