Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
KARAFIÁT, M. BURGET, L. MATĚJKA, P. GLEMBEK, O. ČERNOCKÝ, J.
Originální název
iVector-Based Discriminative Adaptation for Automatic Speech Recognition
Typ
článek ve sborníku mimo WoS a Scopus
Jazyk
angličtina
Originální abstrakt
The iVector is a low-dimensional fixed-length representation of information about speaker and acoustic environment. To utilize iVectors for adaptation, region dependent linear transforms (RDLT) are discriminatively trained using the MPE criterion on large amounts of annotated data to extract the relevant information from iVectors and to compensate speech features. The approach was tested on standard CTS data. We found it to be complementary to common adaptation techniques. On a well-tuned RDLT system with standard CMLLR adaptation we reached an 0.8% additive absolute WER improvement.
Klíčová slova
Automatic speech recognition, I-vector, Discriminative adaptation
Autoři
KARAFIÁT, M.; BURGET, L.; MATĚJKA, P.; GLEMBEK, O.; ČERNOCKÝ, J.
Rok RIV
2011
Vydáno
11. 12. 2011
Nakladatel
IEEE Signal Processing Society
Místo
Hilton Waikoloa Village, Big Island, Hawaii
ISBN
978-1-4673-0366-8
Kniha
Proceedings of ASRU 2011
Strany od
152
Strany do
157
Strany počet
6
URL
http://www.fit.vutbr.cz/research/groups/speech/publi/2011/karafiat_asru2011_00152.pdf
BibTex
@inproceedings{BUT76442, author="Martin {Karafiát} and Lukáš {Burget} and Pavel {Matějka} and Ondřej {Glembek} and Jan {Černocký}", title="iVector-Based Discriminative Adaptation for Automatic Speech Recognition", booktitle="Proceedings of ASRU 2011", year="2011", pages="152--157", publisher="IEEE Signal Processing Society", address="Hilton Waikoloa Village, Big Island, Hawaii", isbn="978-1-4673-0366-8", url="http://www.fit.vutbr.cz/research/groups/speech/publi/2011/karafiat_asru2011_00152.pdf" }