Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
BARTÍK, V.
Originální název
Measuring Web Page Similarity Based on Textual and Visual Properties
Typ
článek ve sborníku ve WoS nebo Scopus
Jazyk
angličtina
Originální abstrakt
Measuring web page similarity is a very important task in the area of web mining and information retrieval. This paper introduces the method for measuring web page similarity, which considers both textual and visual properties of pages. Textual properties of a page are described by means of modified weight vector space model. General visual properties are captured via segmentation of a page, which divides a page into visual blocks, properties of which are stored into a vector of visual properties. These both vectors are then used to compute the whole web page similarity. This method will be described in detail and results of several experiments are also introduced in this paper.
Klíčová slova
Web page similarity, clustering, vector space model, vector distance, term weighting, visual blocks.
Autoři
Rok RIV
2012
Vydáno
3. 5. 2012
Nakladatel
Springer Verlag
Místo
Zakopane
ISBN
978-3-642-29349-8
Kniha
The 11th International Conference on Artificial Intelligence and Soft Computing
Edice
Lecture Notes in Artificial Intelligence, Vol. 7268
ISSN
0302-9743
Periodikum
Lecture Notes in Computer Science
Číslo
7268
Stát
Spolková republika Německo
Strany od
13
Strany do
21
Strany počet
9
URL
https://www.fit.vut.cz/research/publication/9850/
BibTex
@inproceedings{BUT76500, author="Vladimír {Bartík}", title="Measuring Web Page Similarity Based on Textual and Visual Properties", booktitle="The 11th International Conference on Artificial Intelligence and Soft Computing", year="2012", series="Lecture Notes in Artificial Intelligence, Vol. 7268", journal="Lecture Notes in Computer Science", number="7268", pages="13--21", publisher="Springer Verlag", address="Zakopane", isbn="978-3-642-29349-8", issn="0302-9743", url="https://www.fit.vut.cz/research/publication/9850/" }
Dokumenty
icaisc.pdf