Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
DIBLÍK, J. RŮŽIČKOVÁ, M. ŠUTÁ, Z.
Originální název
Asymptotic convergence of the solutions of a discrete system with delays
Typ
článek v časopise - ostatní, Jost
Jazyk
angličtina
Originální abstrakt
A system of $s$ discrete equations \begin{equation*} \Delta y (n)=\beta(n)[y(n-j)-y(n-k)] \end{equation*} is considered where $k$ and $j$ are integers, $k>j\geq0$, $\beta(n)$ is a real $s\times s$ square matrix defined for $n\ge n_{0}-k$, $n_{0}\in \mathbb{Z}$ with non-negative elements $\beta _{ij}(n)$, $i,j=1,\dots,s$ such that $\sum_{j=1}^{s}\beta _{ij}(n)>0$, $y=(y_1, y_2,\dots,y_s)^T\colon {n_{0}-k,n_{0}-k+1,\dots\}\to \mathbb{R}^{s}$ and $\Delta y(n)=y(n+1)-y(n)$ for $n\ge n_{0}$. A method of auxiliary inequalities is used to prove that every solution of the given system is asymptotically convergent under some conditions, i.e., for every solution $y(n)$ defined for all sufficiently large $n$, there exists a finite limit $\lim_{n\to\infty}y(n)$. Moreover, it is proved that the asymptotic convergence of all solutions is equivalent to the existence of one asymptotically convergent solution with increasing coordinates. Some discussion related to the so-called critical case known for scalar equations is given as well.
Klíčová slova
Discrete equation, delay, asymptotic convergence, increasing solution.
Autoři
DIBLÍK, J.; RŮŽIČKOVÁ, M.; ŠUTÁ, Z.
Rok RIV
2012
Vydáno
15. 12. 2012
Nakladatel
Elsevier Science Publishing Co
Místo
USA
ISSN
0096-3003
Periodikum
APPLIED MATHEMATICS AND COMPUTATION
Ročník
Číslo
18
Stát
Spojené státy americké
Strany od
4036
Strany do
4044
Strany počet
9
BibTex
@article{BUT95916, author="Josef {Diblík} and Miroslava {Růžičková} and Zuzana {Šutá}", title="Asymptotic convergence of the solutions of a discrete system with delays", journal="APPLIED MATHEMATICS AND COMPUTATION", year="2012", volume="2012", number="18", pages="4036--4044", issn="0096-3003" }