Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
VOŘECHOVSKÝ, M.
Originální název
Optimal singular correlation matrices estimated when sample size is less than the number of random variables
Typ
článek v časopise - ostatní, Jost
Jazyk
angličtina
Originální abstrakt
This paper presents a number of theoretical and numerical results for two norms of optimal correlation matrices in relation to correlation control in Monte Carlo type sampling and the designs of experiments. The optimal correlation matrices are constructed for cases when the number of simulations (experiments) Nsim is less than or equal to the stochastic dimension, i.e. the number of random variables (factors) Nvar. In such cases the estimated correlation matrix cannot be positive definite and must be singular. However, the correlation matrix may be required to be as close to the unit matrix as possible (optimal). The paper presents a simple mechanical analogy for such optimal singular positive semidefinite correlation matrices. Many examples of optimal correlation matrices are given, both analytically and numerically.
Klíčová slova
Correlation matrix, error norm, singular matrix, positive semidefinitness, mechanical analogy, Toeplitz matrix, correlation control
Klíčová slova v angličtině
Autoři
Rok RIV
2012
Vydáno
8. 11. 2012
Nakladatel
Elsevier
Místo
Spojené království Velké Británie a Severního Irska
ISSN
0266-8920
Periodikum
PROBABILISTIC ENGINEERING MECHANICS
Ročník
2012 (30)
Číslo
1
Stát
Strany od
104
Strany do
116
Strany počet
13
BibTex
@article{BUT96655, author="Miroslav {Vořechovský}", title="Optimal singular correlation matrices estimated when sample size is less than the number of random variables", journal="PROBABILISTIC ENGINEERING MECHANICS", year="2012", volume="2012 (30)", number="1", pages="104--116", issn="0266-8920" }