Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
ŠILHAVÁ, J. SMRŽ, P.
Originální název
Combining Gene Expression and Clinical Data to Increase Performance of Prognostic Breast Cancer Models
Typ
článek ve sborníku mimo WoS a Scopus
Jazyk
angličtina
Originální abstrakt
Microarray class prediction is an important application of gene expression data in biomedical research. Combining gene expression data with other relevant data may add valuable information and can generate more accurate prognostic predictions. In this paper, we combine gene expression data with clinical data. We use logistic regression models that can be built through various regularized techniques. Generalized linear models enables combining of these models with different structure of data. Our two suggested approaches are evaluated with publicly available breast cancer data sets. Based on the results, our approaches have a positive effect on prediction performances and are not computationally intensive.
Klíčová slova
generalized linear models, logistic regression, regularization, combined data, gene expression data
Autoři
ŠILHAVÁ, J.; SMRŽ, P.
Rok RIV
2012
Vydáno
1. 2. 2012
Nakladatel
Institute for Systems and Technologies of Information, Control and Communication
Místo
Algarve
ISBN
978-989-8425-95-9
Kniha
4th International Conference on Agents and Artificial Intelligence
Strany od
1
Strany do
6
Strany počet
BibTex
@inproceedings{BUT97081, author="Jana {Šilhavá} and Pavel {Smrž}", title="Combining Gene Expression and Clinical Data to Increase Performance of Prognostic Breast Cancer Models", booktitle="4th International Conference on Agents and Artificial Intelligence", year="2012", pages="1--6", publisher="Institute for Systems and Technologies of Information, Control and Communication", address="Algarve", isbn="978-989-8425-95-9" }