Detail publikace

Predictor–corrector Obreshkov pairs

SEHNALOVÁ, P. BUTCHER, J.

Originální název

Predictor–corrector Obreshkov pairs

Typ

článek v časopise - ostatní, Jost

Jazyk

angličtina

Originální abstrakt

The combination of predictor–corrector (PEC) pairs of Adams methods can be generalized to high derivative methods using Obreshkov quadrature formulae. It is convenient to construct predictor–corrector pairs using a combination of explicit (Adams–Bashforth for traditional PEC methods) and implicit (Adams–Moulton for traditional PEC methods) forms of the methods. This paper will focus on one special case of a fourth order method consisting of a two-step predictor followed by a one-step corrector, each using second derivative formulae. There is always a choice in predictor–corrector pairs of the so-called mode of the method and we will consider both PEC and PECE modes. The Nordsieck representation of Adams methods, as developed by C. W. Gear and others, adapts well to the multiderivative situation and will be used to make variable stepsize convenient. In the first part of the paper we explain the basic approximations used in the predictor–corrector formula. Those can be written in terms of Obreshkov quadrature. Next section we discuss the equations in terms of Nordsieck vectors. This provides an opportunity to extend the Gear Nordsieck factorization to achieve a variable stepsize formulation. Numerical tests with the new method are also discussed. The paper will present Prothero–Robinson and Kepler problem to illustrate the power of the approach.

Klíčová slova

PEC methods, Adams methods, Nordsieck representation, Ordinary differential equations, Numerical methods

Autoři

SEHNALOVÁ, P.; BUTCHER, J.

Rok RIV

2013

Vydáno

10. 1. 2013

Nakladatel

Springer-Verlag Wien

Místo

AT

ISSN

0010-485X

Periodikum

COMPUTING

Ročník

95

Číslo

5

Stát

Rakouská republika

Strany od

355

Strany do

371

Strany počet

17

URL

BibTex

@article{BUT97130,
  author="Pavla {Sehnalová} and John {Butcher}",
  title="Predictor–corrector Obreshkov pairs",
  journal="COMPUTING",
  year="2013",
  volume="95",
  number="5",
  pages="355--371",
  doi="10.1007/s00607-012-0258-0",
  issn="0010-485X",
  url="http://link.springer.com/article/10.1007%2Fs00607-012-0258-0"
}