Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
LEHKÝ, D. NOVÁK, D.
Originální název
Solving Inverse Structural Reliability Problem Using Artificial Neural Networks and Small-Sample Simulation
Typ
článek v časopise - ostatní, Jost
Jazyk
angličtina
Originální abstrakt
A new general inverse reliability analysis approach based on artificial neural networks is proposed. An inverse reliability analysis is a problem of obtaining design parameters corresponding to a specified reliability (reliability index or theoretical failure probability). Design parameters can be deterministic or they can be associated with random variables. The aim is to generally solve not only single design parameter cases but also multiple parameter problems with given multiple reliability constraints. Inverse analysis is based on the coupling of a stochastic simulation of the Monte Carlo type (the small-sample simulation method Latin hypercube sampling) and an artificial neural network. The validity and efficiency of this approach is shown using numerical examples with single as well as multiple reliability constraints and with single as well as multiple design parameters, and with independent basic random variables as well as random variables with prescribed statistical correlations.
Klíčová slova
Inverse reliability problem, identification, artificial neural network, Latin hypercube sampling, uncertainties, reliability
Autoři
LEHKÝ, D.; NOVÁK, D.
Rok RIV
2012
Vydáno
30. 11. 2012
Místo
United Kingdom
ISSN
1369-4332
Periodikum
ADVANCES IN STRUCTURAL ENGINEERING
Ročník
15
Číslo
11
Stát
Spojené státy americké
Strany od
1911
Strany do
1920
Strany počet
10
BibTex
@article{BUT97432, author="David {Lehký} and Drahomír {Novák}", title="Solving Inverse Structural Reliability Problem Using Artificial Neural Networks and Small-Sample Simulation", journal="ADVANCES IN STRUCTURAL ENGINEERING", year="2012", volume="15", number="11", pages="1911--1920", issn="1369-4332" }