Přístupnostní navigace
Přejít k obsahu
|
Přejít k hlavnímu menu
VUT
Menu
Život na VUT
Submenu
Atmosféra VUT
Prostory školy
Koleje
Stravování
Sport na VUT
Studentský život
Brno
Pro uchazeče
Submenu
Fakulty a programy
Jak se dostat na VUT
Dny otevřených dveří
Celoživotní vzdělávání
Zpracování osobních údajů uchazečů o studium
E-přihláška
Pro studenty
Submenu
Předměty
Studijní programy
Poplatky za studium
Studijní předpisy
Studium a stáže v zahraničí
Stipendia
Sociální bezpečí
Závěrečné práce
Knihovny
(externí odkaz)
Studium bez bariér
Uznání zahraničního vzdělání
Zpracování osobních údajů studentů
Podpora podnikání
Věda a výzkum
Submenu
Věda a výzkum na VUT
Mezinárodní vědecká rada
Evaluace
Centra výzkumu
Transfer znalostí
Open Science
Projekty
Projekty ze strukturálních fondů
Specifický výzkum
Publikace a výsledky VaV
Spolupráce
Submenu
Firemní spolupráce
Zahraniční spolupráce
Střední školy a VUT
Služby univerzity
Mezinárodní dohody
Univerzitní sítě
O univerzitě
Submenu
Profil univerzity
Udržitelná univerzita
Bezpečná univerzita
Podnikavá univerzita / ContriBUTe
Kalendář akcí
Absolventi
(externí odkaz)
Organizační struktura
Pracovní příležitosti
(externí odkaz)
Úřední deska
Sociální bezpečí
Podpora a rozvoj zaměstnanců a studujících / HR Award
Pro média
Kontakty
Ochrana osobních údajů
Vyznamenání
Fakulty
Fakulta stavební
Fakulta strojního inženýrství
Fakulta elektrotechniky a komunikačních technologií
Fakulta architektury
Fakulta chemická
Fakulta podnikatelská
Fakulta výtvarných umění
Fakulta informačních technologií
Vysokoškolské ústavy
Ústav soudního inženýrství
Centrum sportovních aktivit
Středoevropský technologický institut (CEITEC VUT)
Součásti
Centrum informačních služeb
Centrum vzdělávání a poradenství
Koleje a menzy
Nakladatelství VUTIUM
Ústřední knihovna
Rektorát
EN
Přihlásit se
Přihlásit se
Web VUT
Intraportál
Studis
Teacher
Elearning
Hledat
EN
Vyhledávání
Vyhledat
Zavřít
VUT
O univerzitě
Pro média
Tiskové zprávy
Novinky ve výzkumu slunečního větru zaujaly prestižní astronomický časopis i NASA
Novinky ve výzkumu slunečního větru zaujaly prestižní astronomický časopis i NASA
Od písečných dun v Saharské poušti až po mrazivé Špicberky, všude tam během čtrnácti let sledoval mezinárodní tým výzkumníků z Havajské univerzity a Fakulty strojního inženýrství VUT v Brně úplná zatmění Slunce. Své nejnovější poznatky nedávno shrnuli v článku pro prestižní odborný časopis Astrophysical Journal Letters a článku si na svém webu všímá i NASA. Díky svým měřením odborníci určili zdroje různých proudů slunečního větru ve sluneční koróně.
Prchavý okamžik, kdy měsíc zakryje sluneční kotouč a nastane úplné zatmění Slunce, je tím pravým momentem, za kterým mezinárodní vědecký tým z Ústavu matematiky FSI VUT v Brně a z Institute for Astronomy University of Hawaii cestuje po celém světě. Zajímá je především sluneční koróna, jasně zářící okolí Slunce tvořené velmi řídkým plazmatem o velmi vysoké teplotě, která je nejlépe viditelná právě během úplného zamění.
Sluneční koróna během celého cyklu sluneční aktivity. | Autor: Ústav matematiky FSI VUT
Z naměřených dat nyní určili zdroje proudů pomalého, středního a rychlého slunečního větru, jehož rychlost se pohybuje od 300 do 700 kilometrů za sekundu. Nové objevy k fyzikálním procesům, jež formují sluneční vítr, představili v prestižním odborném časopise Astrophysical Journal Letters. Sluneční vítr má přitom velký vliv na naši planetu, způsobuje totiž ionizaci zemské atmosféry, která se projevuje výskytem polární záře, poruchou příjmu na krátkých rádiových vlnách nebo kolísáním a výpadky v elektrické síti, které mohou být i velmi vážné.
Data pro své závěry sbírali výzkumníci dlouhá léta. Slunce totiž prochází přibližně jedenáctiletým cyklem, kdy se střídají pravidelná období vysoké aktivity s obdobími klidu. „Protože má sluneční cyklus velký vliv na naši Zemi, je důležité mít k dispozici pozorování alespoň během jednoho celého cyklu, což se našemu týmu podařilo a článek pro Astrophysical Journal Letters je založený na datech z let 2008 až 2019,“ říká matematik Miloslav Druckmüller, který vede tým odborníků na strojní fakultě VUT. Upozornění na jejich závěry se objevilo i na stránkách Americké astronomické společnosti a na webu NASA.
Jak změřit Slunci teplotu
„Našim hlavním zájmem je především výzkum záření těžkých iontů železa a niklu ve sluneční koróně. Klíčovou úlohu hraje unikátní aparatura pro pozorování šesti různých iontů těchto prvků, z nichž každý potřebuje ke svému vzniku jinou teplotu v rozmezí 0,5 až 2,5 milionu Kelvinů. To nám umožňuje měřit teplotu v místech, kam se zřejmě nikdy nebude možné dostat a provést měření přímo na místě,“ vysvětluje Druckmüller.
I když samotná myšlenka tohoto principu měření teploty ve sluneční koróně je poměrně jednoduchá, její praktické provedení je velice obtížné. Většina světla sluneční koróny je tvořena bílým světlem, které pochází ze sluneční fotosféry a je rozptylováno volnými elektrony, které tvoří ve sluneční koróně jakousi mlhu. Záření různých iontů je naopak velmi slabé, asi stošedesátkrát slabší než toto bílé světlo. „Právě oddělení tohoto velmi slabého záření od intenzivního bílého světla je největším problémem. Unikátní aparatura, která umožňuje tento problém řešit, po mechanické stránce celá vznikla na naší fakultě a zčásti je vyrobena 3D tiskem. Software pro řízení celého zařízení vytvořil kolega Pavel Štarha, matematické algoritmy pro zpracování obrazů včetně jejich implementace jsou pak mým dílem,“ popisuje Druckmüller.
Aparatura pro pozorování iontů železa a niklu ve sluneční koróně. | Autor: Ústav matematiky FSI VUT
Aparatura byla financována havajskou univerzitou, cena jednoho modulu pro pozorování záření jednoho z iontů je srovnatelná s cenou dražšího automobilu. „Na naše poměry se může zdát tato technika velmi drahá, ale v porovnání s kosmickým výzkumem je to zařízení velice levné. Jeho hlavní výhodou je, že jej můžeme rychle modernizovat, přidávat další moduly a díky tomu i rychle uskutečnit nové nápady,“ dodává Druckmüller.
Naměřené informace o záření iontů železa a niklu nabývají zásadním způsobem na významu, pokud se zkombinují s daty z kosmických sond, které analyzují složení slunečního větru přímo ve vesmíru. Dovedou zjistit, z jakého atomu iont vznikl, kolik mu chybí elektronů a jakou rychlostí se pohybuje. Měření tyto sondy provádějí velmi daleko od Slunce, ve vzdálenosti Země a dokonce i ve vzdálenosti Jupiteru. „Mohlo by se zdát, že v těchto vzdálenostech složení iontů nemá nic společného se složením iontů, které pozorujeme přímo ve sluneční koróně. Není to však pravda. Částice slunečního větru, který vzniká ve sluneční koróně, se velmi rychle dostanou do míst s tak dokonalým vakuem, že jejich vzájemné srážky jsou prakticky vyloučeny. Tato oblast začíná překvapivě blízko Slunce, blíže než jeden sluneční poloměr, a určení této hranice je dalším významným výsledkem naší spolupráce s havajskou univerzitou,“ uzavírá Druckmüller.
Článek v Astrophysical Journal Letters:
https://iopscience.iop.org/article/10.3847/2041-8213/abe775
Upozornění na stránkách American Astronomical Society:
https://aasnova.org/2021/05/03/featured-image-eclipses-reveal-sources-of-solar-wind/
Upozornění na stránkách NASA:
https://www.nasa.gov/feature/goddard/2021/total-solar-eclipses-shine-light-solar-wind-ace
Publikováno
15.07.2021 10:47
Odkaz
https://www.vut.cz/vut/media/f19527/d213747
Odpovědnost:
Mgr. Kamila Šmídková
Nahoru