Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Nádherné snímky bílé sluneční koróny i zcela jedinečné obrazy záření iontů železa a argonu. Z obrovského množství dat se po týdnech práce matematika Miloslava Druckmüllera z Fakulty strojního inženýrství VUT v Brně vylouply jedinečné fotografie letošního úplného zatmění Slunce. Úkaz se odehrál 20. dubna 2023 nad západním pobřežím Austrálie, kam za ním vyrazil i mezinárodní vědecký tým složený z brněnských matematiků a astrofyziků z Havajské univerzity.Detail vnitřní koróny | Autor: Miloslav Druckmüller
„Letos jsme překonali všechno, co se nám až doteď podařilo. Snímky bílé sluneční koróny v tomto množství a kvalitě nikdo jiný nemá. A co se týče snímků spektrálních čar iontů železa a argonu, ty jsou světově naprosto unikátní,“ hodnotí výsledky expedice profesor Miloslav Druckmüller z Ústavu matematiky.
Právě on je autorem softwaru, pomocí kterého nasbíraná data zpracovává do podoby snímků, které ve světě nemají obdoby. Zatímco pro laiky jsou fotografie prostě „jen krásné“, pro astrofyziky z Havajské univerzity jsou zdrojem cenných informací o jasně zářícím okolí Slunce tvořeném žhavým ionizovaným plynem - plazmatem.
Za skvělými výsledky letos stojí nejen dobré počasí, které expedici tentokrát přálo, ale i nová technika. Zásadní zlepšení se povedlo zejména v pozorování záření iontů železa ve sluneční koróně. „Pořídili jsme nové filtry, které na rozdíl od původních nemusí být umístěny v termostatu, což s sebou dřív neslo řadu problémů: museli jsme jejich teplotu udržovat na 40 stupních Celsia s výkyvy maximálně jeden stupeň. To znamenalo velkou spotřebu elektrické energie v místech, kde běžně není připojení na elektrickou síť. Nové filtry nepotřebují žádný termostat, jsou stabilní v obrovském rozsahu teplot,“ chválí si Druckmüller a dodává, že nákladné filtry zafinancovala Havajská univerzita. Jeden nový filtr stál 8 500 dolarů, tedy skoro 200 000 korun a v celé sestavě na jednom z pozorovacích míst jich je osm.
Dalšímu zlepšení pomohla nová optika, kterou naopak výzkumníci pořídili levně na internetových portálech. „Jsou to sice špičkové objektivy, ale na dnes již nepoužívaný fotoaparát Contax. Jeden kus se dal koupit za 200 až 300 dolarů, vykoupili jsme snad všechny zbývající zásoby na světě,“ říká s úsměvem Druckmüller. Třetím zlepšením byl nákup nových kamer, které nahradily na svou dobu sice špičkové, ale po letech už zastaralé předchůdkyně. „S dřívějšími kamerami se jeden obrázek načítal do paměti počítače jednu až dvě vteřiny, takže jsme třeba polovinu času zatmění ztratili jen přenosem dat. Nové kamery zvládnou ukládat desítky obrázků za sekundu, díky čemuž je využití času zatmění prakticky stoprocentní. Například letos trvalo zatmění jen necelou minutu, kterou jsme ale mohli naplno využít. Kamery mají navíc desetinásobně lepší rozlišení než ty původní, takže jde opravdu o velký posun,“ popisuje Druckmüller.Záření 13x ionizovaného železa | Autor: Miloslav Druckmüller
Všechny barvy Slunce
Výzkumný tým Solar Wind Sherpas se věnuje zkoumání neviditelných “barev” sluneční koróny. Díky vlastnímu speciálnímu vybavení, které bylo zmíněno výše, pozorují chování prvků, které ztratily mnoho, často i polovinu, svých elektronů a vyzařují světlo ve velmi specifických „barvách“, respektive vlnových délkách. Mezi nejdominantnější prvky na Slunci patří vodík a helium. Ve sluneční koróně se vyskytují i další prvky jako například železo, nikl, kyslík, uhlík a vápník. Každý z nich v sobě skrývá tajemství horké koróny, která obklopuje Slunce a utváří se v ní sluneční vítr. Ten má velký vliv na naši planetu, způsobuje totiž ionizaci zemské atmosféry, která se projevuje výskytem polární záře, poruchou příjmu na krátkých rádiových vlnách nebo kolísáním a výpadky v elektrické síti, které mohou být i velmi vážné.
„Letos se nám poprvé podařilo pozorovat devětkrát ionizovaný argon, to je velký úspěch. Již od roku 2008 pozorujeme ionty železa a niklu. Aby vznikl daný iont, je nutná určitá teplota. Díky pozorování iontů tak máme v podstatě metodu, jak nepřímo měřit teplotu sluneční koróny, kterou jinak změřit neumíme,“ vysvětluje Druckmüller. Zpracování snímku jednoho ionizovaného prvku přitom znamená práci s více než tisícovkou vstupních obrázků: některé zachycují světlo sluneční koróny přes speciální filtry, jiné slouží jako kalibrační snímky.
Obrázky zpracované speciální technikou slouží k vizualizaci jemných struktur, které běžná fotografie zachytit nedokáže. Pro astrofyziky jsou pak snímky důležité v kombinaci s daty, kdy hodnoty jednotlivých pixelů na fotografii mají i přesný fyzikální význam. „Jeden obraz, který tvořím, je vlastně nesprávný, je udělaný tak, aby pro lidský zrak zviditelnil struktury, které se nedají zobrazit přímo, protože mají velmi malý kontrast. Pak existuje také obraz, na kterém není prakticky nic vidět, ale je korektní z hlediska jasu. Teprve tyto dva obrazy dohromady dávají z vědeckého hlediska smysl,“ dodává Druckmüller.Sluneční koróna ve správných barvách | Autor: Miloslav Druckmüller
Tři čtvrtě tuny techniky
Expedice začala zhruba dva týdny před zatměním kompletním přebudováním aparatury, kvůli kterému letěla brněnská část týmu nejprve na Havaj a odtud pak s americkými kolegy dále do Austrálie. „Z Havaje jsme odlétali se zhruba půl tunou vybavení, které se muselo nejprve proclít. A dalších 250 kilogramů dříve odeslané techniky nás už čekalo v australském Learmontu,“ vyjmenovává matematička Jana Hoderová, která se expedice osobně zúčastnila spolu s kolegou Pavlem Štarhou a studentem mechatroniky Matějem Štarhou.
V Austrálii se tým rozdělil na dvě skupiny. Vědci tuto strategii volí zejména kvůli zvýšení šance na úspěšné pozorování, i jediný mrak v nesprávnou chvíli může zhatit celoroční úsilí. Pokud jsou navíc pozorovací místa dost daleko od sebe, dají se ze snímků vyčíst dynamické změny ve sluneční koróně. Letos byl takzvaný pás totality pouze nad malým kouskem pevniny, oba týmy proto byly poměrně blízko u sebe. Hlavní skupina zvolila pro pozorování pevninský Exmouth. O dost dobrodružnější zážitek měli Jana Hoderová s Matějem Štarhou, kteří vyrazili malou lodí na jeden z bezejmenných ostrůvků v souostroví Lowendal Islands, aby provedli pozorování v podmínkách podobných trosečníkům na pustém ostrově. I zde se ale vše vydařilo. Důkazem je paměťový disk se dvěma terabyty dat, která následující týdny pomocí svých softwarů zpracovával Miloslav Druckmüller.
Na další úplné zatmění Slunce vyrazí tým příští rok do Mexika, kde se úkaz odehraje 8. dubna. Tentokrát má zatmění trvat dlouhé čtyři minuty.Bílá sluneční koróna | Autor: Miloslav Druckmüller
Zatmění Slunce je astronomický jev, který nastane, když Měsíc vstoupí mezi Zemi a Slunce, takže jej částečně nebo zcela zakryje. V případě úplného zatmění dochází na zastíněné části Země k výraznému setmění a ochlazení, kolem Měsíce zakrývajícího Slunce je vidět výrazná záře sluneční koróny, na obloze se objeví hvězdy i některé planety. Stín široký asi tak sto kilometrů zatemní Zemi, teplota klesne o několik stupňů. Není slyšet jediný zvuk, nezazpívá ani pták. Úplné zatmění je pozorovatelné jen z oblasti Země, které se říká pás totality.
Předchozí úplně zatmění Slunce bylo pozorovatelné 4. 12. 2021 z Antarktidy, kde ovšem pozorování českým vědcům zhatilo špatné počasí. Letos se zatmění událo 20. dubna a bylo pozorovatelné v Indickém a Tichém oceánu, pevniny se v Austrálii „dotklo“ pouze na poloostrově Exmouth a blízkých ostrovech.
Další šanci budou mít 8. 4. 2024, kdy pás totality zasáhne Mexiko, USA a Kanadu. Nejbližší úplné zatmění Slunce pozorovatelné přímo v Evropě nastane 12. srpna 2026 a bude možné ho pozorovat ve Španělsku nebo na nejzápadnějších výběžcích Islandu. Česká republika se dočká až 7. října roku 2135.
The Solar Wind Sherpas je mezinárodním týmem vědců a badatelů, kteří cestují po světě, aby pozorovali a sbírali data o úplných zatměních Slunce. Tým, který se jmenuje příhodně vzhledem k obrovskému množství vybavení, které si s sebou vozí na každé (obvykle vzdálené) pozorovací místo, vede prof. Shadia R. Habbal z Astronomického institutu v Honolulu na Havaji. Doposud Solar Wind Sherpas uskutečnili 14 expedic za zatměním, mimo jiné do Indie (1995), Sýrie (1999), Libye (2006), Číny (2008), Arktidy (2015) či Indonésie (2016). Tým je jedním z mála na světě, který využil diagnostický potenciál pozorování koronálních emisních čar na více vlnových délkách, což vedlo k řadě objevů a úspěšných vědeckých publikací.
Odpovědnost: Mgr. Kamila Šmídková