Project detail

Výpočtové modelování biomechanických problémů se zaměřením na modely materiálu

Duration: 01.01.2014 — 31.12.2016

Funding resources

Brno University of Technology - Vnitřní projekty VUT

- whole funder (2014-01-01 - 2015-12-31)

On the project

Při léčbě některých chorob srdečně-cévní i svalově-kosterní soustavy se ve značném rozsahu uplatňují chirurgické postupy (např. kloubní i cévní endoprotézy). V současnosti se stále více uplatňuje při posouzení prognózy pacienta a výběru optimálního léčebného postupu výpočtové modelování, založené na reálné 3D geometrii orgánu, vycházející z jeho CT snímkování. Nejdůležitějším faktorem ovlivňujícím věrohodnost výsledků, jsou konstitutivní modely dotčených tkání, ať už tvrdých (kost) nebo měkkých (cévní stěna).

Mark

FSI-S-14-2344

Default language

Czech

People responsible

Bansod Yogesh Deepak, M.Sc. - fellow researcher
Ebringerová Veronika, Ing. - fellow researcher
Fedorova Svitlana, Ph.D. - fellow researcher
Florian Zdeněk, doc. Ing., CSc. - fellow researcher
Man Vojtěch, Ing., Ph.D. - fellow researcher
Marcián Petr, Ing., Ph.D. - fellow researcher
Novák Kamil, Ing., Ph.D. - fellow researcher
Prášilová Eva, Ing. - fellow researcher
Řehák Kamil, Ing., Ph.D. - fellow researcher
Slažanský Martin, Ing., Ph.D. - fellow researcher
Svojanovský Tomáš, Ing. - fellow researcher
Burša Jiří, prof. Ing., Ph.D. - principal person responsible

Units

Institute of Solid Mechanics, Mechatronics and Biomechanics
- internal (2014-01-01 - 2016-12-31)
Faculty of Mechanical Engineering
- beneficiary (2014-01-01 - 2016-12-31)

Results

PRÁŠILOVÁ, E.; FLORIAN, Z.; MARCIÁN, P. Finite Element Analysis of Compression of Lumbar Spine with Dynamic Implant. In Engineering Mechanics 2014. 1. Svratka: BUT, 2014. p. 512-515. ISBN: 978-80-214-4871-1.
Detail

Stanislav Polzer, Kamil Novák, Jiří Burša. Feasibility of Incorporating Blood Pressure Distribution into Rupture Risk Assesment of Abdominal Aortic Aneurysm. ESB 2016, Lyon: 2016. p. 1 (1 s.).
Detail

BURŠA, J.; BANSOD, Y. Design and applications of prestressed tensegrity structures. In Engineering Mechanics 2014, Book of full texts. Svratka: Czech Society for Mechanics, 2014. p. 30-33. ISBN: 978-80-214-4871-1.
Detail

MARCIÁN, P.; BORÁK, L.; VALÁŠEK, J.; KAISER, J.; FLORIAN, Z.; WOLFF, J. Finite Element Analysis of Dental Implant Loading on Atrophic and Non-atrophic Cancellous and Cortical Mandibular Bone - a Feasibility Study. JOURNAL OF BIOMECHANICS, 2014, vol. 47, no. 16, p. 3830-3836. ISSN: 0021-9290.
Detail

POLZER, S.; GASSER, T.; NOVÁK, K.; MAN, V.; TICHÝ, M.; SKÁCEL, P.; BURŠA, J. Structure-based constitutive model can accurately predicts planar biaxial properties of arotic wall tissue. Acta Biomaterialia, 2015, vol. 14, no. 1, p. 133-145. ISSN: 1742-7061.
Detail

NOVÁK, K.; POLZER, S.; TICHÝ,M.; BURŠA, J. Automatic Evaluation of Collagen Fiber Directions from Polarized Light Microscopy Images. MICROSCOPY AND MICROANALYSIS, 2015, vol. 21, no. 4, p. 863-875. ISSN: 1431-9276.
Detail

FEDOROVA, S. Computational Modeling of Fiber Composites with Thick Fibers as Homogeneous Structures with Use of Couple Stress Theory. In Design and Analysis of Reinforced Fiber Composites. Pedro V. Marcal, Nobuki Yamagata. 2015. p. 25-47. ISBN: 978-3-319-20007-1.
Detail

SLAŽANSKÝ, M.; POLZER, S.; BURŠA, J. Finite element analyses of biaxial tension testing with different ways of specimen clamping. 2014.
Detail

SLAŽANSKÝ, M.; POLZER, S.; BURŠA, J. Finite element based parametric study of inaccuracies in mechanical testing of soft tissue. 2015.
Detail

MAN, V.; NOVÁK, K.; POLZER, S.; BURŠA, J. Can Laplace law replace more sophisticated analyses of aortic aneurysms?. Špičák: 2014.
Detail

FEDOROVA, S.; LASOTA, T.; BURŠA, J. Application of couple-stress theory for description of large strain bending of fibre composites. 2015. p. 148-148.
Detail

MAN, V.; NOVÁK, K.; POLZER, S.; BURŠA, J. Applicability of simplified models of abdominal aortic aneurysms. Barcelona: 2014.
Detail

POLZER, S.; BURŠA, J.; MAN, V. ALGORITHM FOR INTRODUCING RESIDUAL STRESSES INTO FINITE ELEMENT MODELS OF ANEURYSMS. Prague: 2015.
Detail

MAN, V.; SKÁCEL, P.; POLZER, S.; ŠEVČÍK, V.; BURŠA, J. PRACTICAL ASPECT OF BIAXIAL TESTING OF VASCULAR TISSUE. Prague: 2015.
Detail

SLAŽANSKÝ, M.; POLZER, S.; BURŠA, J. ANALYSIS OF ACCURACY OF BIAXIAL TESTS BASED ON COMPUTATIONAL SIMULATIONS. In CMBE15 4th International Conference on Computational & Mathematical Biomedical Engineering. Swansea, United-Kingdom: CMBE, Zeta Computational Resources Ltd.Swansea, United-Kingdom, 2015. p. 168-171. ISBN: 978-0-9562914-3-1.
Detail

BANSOD, Y.; BURŠA, J. Continuum-based modeling approaches to cell mechanics. World Academy of Science, Engineering and Technology, 2015, vol. 2, no. 9, p. 1202-1213. ISSN: 1307-6892.
Detail

NOVÁK, K.; POLZER, S.; TICHÝ, M.; BURŠA, J. Automatic evaluation of collagen fibre directions from polarized light microscopy images. 2014. p. 1-2.
Detail

RIDWAN-PRAMANA, A.; MARCIÁN, P.; BORÁK, L.; NARRA, N.; FOROUZANFAR, T.; WOLFF, J. Structural and mechanical implications of PMMA implant shape and interface geometry in cranioplasty – a finite element study. JOURNAL OF CRANIO-MAXILLOFACIAL SURGERY, 2016, vol. 44, no. 1, p. 34-44. ISSN: 1010-5182.
Detail

SUZUKI, N.; AOKI, K.; MARCIÁN, P.; BORÁK, L.; WAKABAYASHI, N. A threshold of mechanical strain intensity for the direct activation of osteoblast function exists in a murine maxilla loading model. Biomechanics and Modeling in Mechanobiology, 2016, vol. 15, no. 5, p. 1091-1100. ISSN: 1617-7959.
Detail

HÁJEK, P.; ŠVANCARA, P.; HORÁČEK, J.; ŠVEC, J. G. Finite Element Modelling of the Effect of Stiffness and Damping of Vocal Fold Layers on their Vibrations and Produced Sound. Applied Mechanics and Materials, 2016, no. 821, p. 657-664. ISSN: 1662-7482.
Detail

FUIS, V. SHAPE DEVIATIONS ANALYSIS OF THE ALIGNED BARS. In Engineering Mechanics 2014. Engineering Mechanics .... Svratka: VUT, 2014. p. 184-187. ISBN: 978-80-214-4871-1. ISSN: 1805-8248.
Detail

HÁJEK, P.; ŠVANCARA, P.; HORÁČEK, J.; ŠVEC, J. Numerical Simulation of the Effect of Stiffness of Lamina Propria on the Self-sustained Oscillation of the Vocal Folds. In Engineering Mechanics 2016. Engineering Mechanics .... Svratka: Institute of Thermomechanics, Academy of Sciences of the Czech Republic, v. v. i., Prague, 2016. p. 182-185. ISBN: 978-80-87012-59-8. ISSN: 1805-8248.
Detail

HÁJEK, P.; ŠVANCARA, P.; HORÁČEK, J.; ŠVEC, J. Numerical Simulation of the Self-oscillating Vocal Folds in Interaction with Vocal Tract Shaped for Particular Czech Vowels. In Recent Global Research and Education: Technological Challenges: Proceedings of the 15th International Conference on Global Research and Education Inter-Academia 2016. Advances in Intelligent Systems and Computing. Warsaw: Springer Verlag, 2016. p. 317-323. ISBN: 978-3-319-46490-9. ISSN: 2194-5357.
Detail

HÁJEK, P.; ŠVANCARA, P.; HORÁČEK, J.; ŠVEC, J. FE Modelling of the Influence of the Lamina Propria Properties on the Vocal Folds Vibration and Produced Sound for Specific Czech Vowels. In Computational Mechanics 2016: Book of extended abstracts. Plzeň: University of West Bohemia, 2016. p. 23-24. ISBN: 978-80-261-0647-0.
Detail

BANSOD, Y.; BURŠA, J. Finite element simulation of mechanical tests with bendo-tensegrity models of smooth muscle cell. Vranovska Ves, Czech Republic.: XXIV Cytoskeletal Club, Veterinary Research Institute, Masaryk University., 2016.
Detail

SLAŽANSKÝ, M.; POLZER, S.; BURŠA, J. Analysis of Accuracy of Biaxial Tests Based on their Computational Simulations. Strain, 2016, vol. 52, no. 5, p. 424-435. ISSN: 1475-1305.
Detail

FEDOROVA, S.; BURŠA, J. Application of polar elasticity to the problem of pure bending of a thick plate. In ECCOMAS Congress 2016 - Proceedings of the 7th European Congress on Computational Methods in Applied Sciences and Engineering. Crete, Greece: National Technical University of Athens, 2016. p. 2162-2171. ISBN: 9786188284401.
Detail

ŘEHÁK, K.; SKALLERUD, B. Strain analysis of bone healing. In Engineering Mechanics 2014. 1. Svratka: BUT, 2014. p. 540-544. ISBN: 978-80-214-4871-1.
Detail