Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail projektu
Období řešení: 01.01.2014 — 31.12.2016
Zdroje financování
Vysoké učení technické v Brně - Vnitřní projekty VUT
- plně financující (2014-01-01 - 2015-12-31)
O projektu
Při léčbě některých chorob srdečně-cévní i svalově-kosterní soustavy se ve značném rozsahu uplatňují chirurgické postupy (např. kloubní i cévní endoprotézy). V současnosti se stále více uplatňuje při posouzení prognózy pacienta a výběru optimálního léčebného postupu výpočtové modelování, založené na reálné 3D geometrii orgánu, vycházející z jeho CT snímkování. Nejdůležitějším faktorem ovlivňujícím věrohodnost výsledků, jsou konstitutivní modely dotčených tkání, ať už tvrdých (kost) nebo měkkých (cévní stěna).
Označení
FSI-S-14-2344
Originální jazyk
čeština
Řešitelé
Burša Jiří, prof. Ing., Ph.D. - hlavní řešitelBansod Yogesh Deepak, M.Sc. - spoluřešitelEbringerová Veronika, Ing. - spoluřešitelFedorova Svitlana, Ph.D. - spoluřešitelFlorian Zdeněk, doc. Ing., CSc. - spoluřešitelMan Vojtěch, Ing., Ph.D. - spoluřešitelMarcián Petr, Ing., Ph.D. - spoluřešitelNovák Kamil, Ing., Ph.D. - spoluřešitelPrášilová Eva, Ing. - spoluřešitelŘehák Kamil, Ing., Ph.D. - spoluřešitelSlažanský Martin, Ing., Ph.D. - spoluřešitelSvojanovský Tomáš, Ing. - spoluřešitel
Útvary
Ústav mechaniky těles, mechatroniky a biomechaniky- interní (01.01.2014 - 31.12.2016)Fakulta strojního inženýrství- příjemce (01.01.2014 - 31.12.2016)
Výsledky
PRÁŠILOVÁ, E.; FLORIAN, Z.; MARCIÁN, P. Finite Element Analysis of Compression of Lumbar Spine with Dynamic Implant. In Engineering Mechanics 2014. 1. Svratka: BUT, 2014. p. 512-515. ISBN: 978-80-214-4871-1.Detail
Stanislav Polzer, Kamil Novák, Jiří Burša. Feasibility of Incorporating Blood Pressure Distribution into Rupture Risk Assesment of Abdominal Aortic Aneurysm. ESB 2016, Lyon: 2016. p. 1 (1 s.).Detail
BURŠA, J.; BANSOD, Y. Design and applications of prestressed tensegrity structures. In Engineering Mechanics 2014, Book of full texts. Svratka: Czech Society for Mechanics, 2014. p. 30-33. ISBN: 978-80-214-4871-1.Detail
MARCIÁN, P.; BORÁK, L.; VALÁŠEK, J.; KAISER, J.; FLORIAN, Z.; WOLFF, J. Finite Element Analysis of Dental Implant Loading on Atrophic and Non-atrophic Cancellous and Cortical Mandibular Bone - a Feasibility Study. JOURNAL OF BIOMECHANICS, 2014, vol. 47, no. 16, p. 3830-3836. ISSN: 0021-9290.Detail
POLZER, S.; GASSER, T.; NOVÁK, K.; MAN, V.; TICHÝ, M.; SKÁCEL, P.; BURŠA, J. Structure-based constitutive model can accurately predicts planar biaxial properties of arotic wall tissue. Acta Biomaterialia, 2015, vol. 14, no. 1, p. 133-145. ISSN: 1742-7061.Detail
NOVÁK, K.; POLZER, S.; TICHÝ,M.; BURŠA, J. Automatic Evaluation of Collagen Fiber Directions from Polarized Light Microscopy Images. MICROSCOPY AND MICROANALYSIS, 2015, vol. 21, no. 4, p. 863-875. ISSN: 1431-9276.Detail
FEDOROVA, S. Computational Modeling of Fiber Composites with Thick Fibers as Homogeneous Structures with Use of Couple Stress Theory. In Design and Analysis of Reinforced Fiber Composites. Pedro V. Marcal, Nobuki Yamagata. 2015. p. 25-47. ISBN: 978-3-319-20007-1.Detail
SLAŽANSKÝ, M.; POLZER, S.; BURŠA, J. Finite element analyses of biaxial tension testing with different ways of specimen clamping. 2014.Detail
SLAŽANSKÝ, M.; POLZER, S.; BURŠA, J. Finite element based parametric study of inaccuracies in mechanical testing of soft tissue. 2015.Detail
MAN, V.; NOVÁK, K.; POLZER, S.; BURŠA, J. Can Laplace law replace more sophisticated analyses of aortic aneurysms?. Špičák: 2014.Detail
FEDOROVA, S.; LASOTA, T.; BURŠA, J. Application of couple-stress theory for description of large strain bending of fibre composites. 2015. p. 148-148.Detail
MAN, V.; NOVÁK, K.; POLZER, S.; BURŠA, J. Applicability of simplified models of abdominal aortic aneurysms. Barcelona: 2014.Detail
POLZER, S.; BURŠA, J.; MAN, V. ALGORITHM FOR INTRODUCING RESIDUAL STRESSES INTO FINITE ELEMENT MODELS OF ANEURYSMS. Prague: 2015.Detail
MAN, V.; SKÁCEL, P.; POLZER, S.; ŠEVČÍK, V.; BURŠA, J. PRACTICAL ASPECT OF BIAXIAL TESTING OF VASCULAR TISSUE. Prague: 2015.Detail
SLAŽANSKÝ, M.; POLZER, S.; BURŠA, J. ANALYSIS OF ACCURACY OF BIAXIAL TESTS BASED ON COMPUTATIONAL SIMULATIONS. In CMBE15 4th International Conference on Computational & Mathematical Biomedical Engineering. Swansea, United-Kingdom: CMBE, Zeta Computational Resources Ltd.Swansea, United-Kingdom, 2015. p. 168-171. ISBN: 978-0-9562914-3-1.Detail
BANSOD, Y.; BURŠA, J. Continuum-based modeling approaches to cell mechanics. World Academy of Science, Engineering and Technology, 2015, vol. 2, no. 9, p. 1202-1213. ISSN: 1307-6892.Detail
NOVÁK, K.; POLZER, S.; TICHÝ, M.; BURŠA, J. Automatic evaluation of collagen fibre directions from polarized light microscopy images. 2014. p. 1-2.Detail
RIDWAN-PRAMANA, A.; MARCIÁN, P.; BORÁK, L.; NARRA, N.; FOROUZANFAR, T.; WOLFF, J. Structural and mechanical implications of PMMA implant shape and interface geometry in cranioplasty – a finite element study. JOURNAL OF CRANIO-MAXILLOFACIAL SURGERY, 2016, vol. 44, no. 1, p. 34-44. ISSN: 1010-5182.Detail
SUZUKI, N.; AOKI, K.; MARCIÁN, P.; BORÁK, L.; WAKABAYASHI, N. A threshold of mechanical strain intensity for the direct activation of osteoblast function exists in a murine maxilla loading model. Biomechanics and Modeling in Mechanobiology, 2016, vol. 15, no. 5, p. 1091-1100. ISSN: 1617-7959.Detail
HÁJEK, P.; ŠVANCARA, P.; HORÁČEK, J.; ŠVEC, J. G. Finite Element Modelling of the Effect of Stiffness and Damping of Vocal Fold Layers on their Vibrations and Produced Sound. Applied Mechanics and Materials, 2016, no. 821, p. 657-664. ISSN: 1662-7482.Detail
FUIS, V. SHAPE DEVIATIONS ANALYSIS OF THE ALIGNED BARS. In Engineering Mechanics 2014. Engineering Mechanics .... Svratka: VUT, 2014. p. 184-187. ISBN: 978-80-214-4871-1. ISSN: 1805-8248.Detail
HÁJEK, P.; ŠVANCARA, P.; HORÁČEK, J.; ŠVEC, J. Numerical Simulation of the Effect of Stiffness of Lamina Propria on the Self-sustained Oscillation of the Vocal Folds. In Engineering Mechanics 2016. Engineering Mechanics .... Svratka: Institute of Thermomechanics, Academy of Sciences of the Czech Republic, v. v. i., Prague, 2016. p. 182-185. ISBN: 978-80-87012-59-8. ISSN: 1805-8248.Detail
HÁJEK, P.; ŠVANCARA, P.; HORÁČEK, J.; ŠVEC, J. Numerical Simulation of the Self-oscillating Vocal Folds in Interaction with Vocal Tract Shaped for Particular Czech Vowels. In Recent Global Research and Education: Technological Challenges: Proceedings of the 15th International Conference on Global Research and Education Inter-Academia 2016. Advances in Intelligent Systems and Computing. Warsaw: Springer Verlag, 2016. p. 317-323. ISBN: 978-3-319-46490-9. ISSN: 2194-5357.Detail
HÁJEK, P.; ŠVANCARA, P.; HORÁČEK, J.; ŠVEC, J. FE Modelling of the Influence of the Lamina Propria Properties on the Vocal Folds Vibration and Produced Sound for Specific Czech Vowels. In Computational Mechanics 2016: Book of extended abstracts. Plzeň: University of West Bohemia, 2016. p. 23-24. ISBN: 978-80-261-0647-0.Detail
BANSOD, Y.; BURŠA, J. Finite element simulation of mechanical tests with bendo-tensegrity models of smooth muscle cell. Vranovska Ves, Czech Republic.: XXIV Cytoskeletal Club, Veterinary Research Institute, Masaryk University., 2016.Detail
SLAŽANSKÝ, M.; POLZER, S.; BURŠA, J. Analysis of Accuracy of Biaxial Tests Based on their Computational Simulations. Strain, 2016, vol. 52, no. 5, p. 424-435. ISSN: 1475-1305.Detail
FEDOROVA, S.; BURŠA, J. Application of polar elasticity to the problem of pure bending of a thick plate. In ECCOMAS Congress 2016 - Proceedings of the 7th European Congress on Computational Methods in Applied Sciences and Engineering. Crete, Greece: National Technical University of Athens, 2016. p. 2162-2171. ISBN: 9786188284401.Detail
ŘEHÁK, K.; SKALLERUD, B. Strain analysis of bone healing. In Engineering Mechanics 2014. 1. Svratka: BUT, 2014. p. 540-544. ISBN: 978-80-214-4871-1.Detail