Project detail

SMARTCarPark - Surveillance Monitoring, Analysis and Re-identification of Traffic for Enhanced Car Parking

Duration: 01.01.2018 — 31.12.2020

Funding resources

Technologická agentura ČR - Program na podporu aplikovaného výzkumu a experimentálního vývoje EPSILON (2015-2025)

- whole funder (2018-01-01 - 2020-12-31)

On the project

Cílem projektu je vyvinout novou funkčnost systému pro dohled na parkováním ve městech s využitím dohledových kamerových systémů. Dohled na parkování bude realizován pomocí monitorování a analýzy pohybu vozidel v monitorované oblasti. Hlavní důraz je kladen na neinvazivnost navrhovaného řešení a maximalizaci anonymního monitorování pohybu vozidel pouze s využitím vizuálních znaků bez jednoznačné identifikace vozidla, tedy s ochranou osobních údajů. Vytvořením navrhovaného řešení, bude umožněno zefektivnění dopravy a parkování ve městech.

Description in English
The aim of the project is to develop a new functionality of a parking monitoring system using surveillance camera systems. Parking monitoring will be implemented by monitoring and analyzing the movement of vehicles in the monitored area. The main goal is placed on the non-invasiveness of the proposed solution and the maximization of anonymous vehicle traffic monitoring only with the use of visual features without unambiguous vehicle identification, ie. with the protection of personal data. By creating the proposed solution, it will be possible to make transport and parking in cities more efficient.

Keywords
Analýza dopravy; Vizuální dohled; Počítačové vidění; Vynucení práva; Inteligentní dopravní systémy; Doprava ve městech; Chytrá města; Veřejné parkování

Key words in English
Traffic Analysis; Visual Surveillance; Computer Vision; Law Enforcement; Intelligent Transportation Systems; Metropolitan Congestion; Smart Cities; Public Parking

Mark

TH03010529

Default language

Czech

People responsible

Bartl Vojtěch, Ing., Ph.D. - fellow researcher
Očenášek Matěj, Ing. - fellow researcher
Sonth Akash Prakash - fellow researcher
Herout Adam, prof. Ing., Ph.D. - principal person responsible

Units

Department of Computer Graphics and Multimedia
- co-beneficiary (2017-05-16 - 2020-12-31)

Results

SOCHOR, J.; ŠPAŇHEL, J.; JURÁNEK, R.; DOBEŠ, P.; HEROUT, A. Graph@FIT Submission to the NVIDIA AI City Challenge 2018. In NVIDIA AI City Challenge 2018 (CVPRW). Salt Lake City: IEEE Computer Society, 2018. p. 77-84. ISBN: 978-1-5386-6100-0.
Detail

ŠPAŇHEL, J.; SOCHOR, J.; JURÁNEK, R.; HEROUT, A. Geometric Alignment by Deep Learning for Recognition of Challenging License Plates. In 2018 21st International Conference on Intelligent Transportation Systems (ITSC). Lahaina, Maui: IEEE Intelligent Transportation Systems Society, 2018. p. 3524-3529. ISBN: 978-1-72810-321-1. ISSN: 2153-0017.
Detail

ŠPAŇHEL, J.; SOCHOR, J.; JURÁNEK, R.; DOBEŠ, P.; BARTL, V.; HEROUT, A. Learning Feature Aggregation in Temporal Domain for Re-Identification. COMPUTER VISION AND IMAGE UNDERSTANDING, 2020, vol. 192, no. 11, p. 1-12. ISSN: 1077-3142.
Detail

BARTL, V.; JURÁNEK, R.; ŠPAŇHEL, J.; HEROUT, A. PlaneCalib: Automatic Camera Calibration by Multiple Observations of Rigid Objects on Plane. In 2020 International Conference on Digital Image Computing: Techniques and Applications (DICTA). Melbourne: Institute of Electrical and Electronics Engineers, 2020. p. 1-8. ISBN: 978-1-7281-9108-9.
Detail

BARTL, V.; HEROUT, A. OptInOpt: Dual Optimization for Automatic Camera Calibration by Multi-Target Observations. In 16th IEEE International Conference on Advanced Video and Signal-based Surveillance. Taipei: Institute of Electrical and Electronics Engineers, 2019. p. 1-8. ISBN: 978-1-7281-0990-9.
Detail

DOBEŠ, P.; ŠPAŇHEL, J.; BARTL, V.; JURÁNEK, R.; HEROUT, A. Density-Based Vehicle Counting with Unsupervised Scale Selection. In Digital Image Computing: Techniques and Applications 2020. Melbourne: Institute of Electrical and Electronics Engineers, 2020. p. 1-8. ISBN: 978-1-7281-9108-9.
Detail

ŠPAŇHEL, J.; BARTL, V.; JURÁNEK, R.; HEROUT, A. Vehicle Re-Identification and Multi-Camera Tracking in Challenging City-Scale Environment. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops. Long Beach: IEEE Computer Society, 2019. p. 150-158. ISSN: 2160-7516.
Detail

FOLENTA, J.; ŠPAŇHEL, J.; BARTL, V.; HEROUT, A. Determining Vehicle Turn Counts at Multiple Intersections by Separated Vehicle Classes Using CNNs. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops. Seattle, WA: IEEE Computer Society, 2020. p. 2544-2549. ISBN: 978-1-7281-9360-1. ISSN: 2160-7516.
Detail

ŠPAŇHEL, J.; BARTL, V.; JURÁNEK, R.; HEROUT, A.: Vehicle-ReID; Vehicle Re-Identification Software. https://medusa.fit.vutbr.cz/traffic/?p=580. URL: https://medusa.fit.vutbr.cz/traffic/?p=580. (software)
Detail

BARTL, V.; ŠPAŇHEL, J.; JURÁNEK, R.; HEROUT, A.: AutoCalib-Rigid; Automatic Camera Calibration. https://github.com/BUT-GRAPH-at-FIT/Automatic-Camera-Calibration. URL: https://github.com/BUT-GRAPH-at-FIT/Automatic-Camera-Calibration. (software)
Detail