Detail projektu

SMARTCarPark - Monitorování, analýza a re-identifikace dopravy pro pokročilé parkování vozidel

Období řešení: 01.01.2018 — 31.12.2020

Zdroje financování

Technologická agentura ČR - Program na podporu aplikovaného výzkumu a experimentálního vývoje EPSILON (2015-2025)

- plně financující (2018-01-01 - 2020-12-31)

O projektu

Cílem projektu je vyvinout novou funkčnost systému pro dohled na parkováním ve městech s využitím dohledových kamerových systémů. Dohled na parkování bude realizován pomocí monitorování a analýzy pohybu vozidel v monitorované oblasti. Hlavní důraz je kladen na neinvazivnost navrhovaného řešení a maximalizaci anonymního monitorování pohybu vozidel pouze s využitím vizuálních znaků bez jednoznačné identifikace vozidla, tedy s ochranou osobních údajů. Vytvořením navrhovaného řešení, bude umožněno zefektivnění dopravy a parkování ve městech.

Popis anglicky
The aim of the project is to develop a new functionality of a parking monitoring system using surveillance camera systems. Parking monitoring will be implemented by monitoring and analyzing the movement of vehicles in the monitored area. The main goal is placed on the non-invasiveness of the proposed solution and the maximization of anonymous vehicle traffic monitoring only with the use of visual features without unambiguous vehicle identification, ie. with the protection of personal data. By creating the proposed solution, it will be possible to make transport and parking in cities more efficient.

Klíčová slova
Analýza dopravy; Vizuální dohled; Počítačové vidění; Vynucení práva; Inteligentní dopravní systémy; Doprava ve městech; Chytrá města; Veřejné parkování

Klíčová slova anglicky
Traffic Analysis; Visual Surveillance; Computer Vision; Law Enforcement; Intelligent Transportation Systems; Metropolitan Congestion; Smart Cities; Public Parking

Označení

TH03010529

Originální jazyk

čeština

Řešitelé

Herout Adam, prof. Ing., Ph.D. - hlavní řešitel
Bartl Vojtěch, Ing., Ph.D. - spoluřešitel
Očenášek Matěj, Ing. - spoluřešitel
Sonth Akash Prakash - spoluřešitel

Útvary

Ústav počítačové grafiky a multimédií
- spolupříjemce (16.05.2017 - 31.12.2020)
FT Technologies a.s.
- příjemce (16.05.2017 - 31.12.2020)

Výsledky

SOCHOR, J.; ŠPAŇHEL, J.; JURÁNEK, R.; DOBEŠ, P.; HEROUT, A. Graph@FIT Submission to the NVIDIA AI City Challenge 2018. In NVIDIA AI City Challenge 2018 (CVPRW). Salt Lake City: IEEE Computer Society, 2018. p. 77-84. ISBN: 978-1-5386-6100-0.
Detail

ŠPAŇHEL, J.; SOCHOR, J.; JURÁNEK, R.; HEROUT, A. Geometric Alignment by Deep Learning for Recognition of Challenging License Plates. In 2018 21st International Conference on Intelligent Transportation Systems (ITSC). Lahaina, Maui: IEEE Intelligent Transportation Systems Society, 2018. p. 3524-3529. ISBN: 978-1-72810-321-1. ISSN: 2153-0017.
Detail

ŠPAŇHEL, J.; SOCHOR, J.; JURÁNEK, R.; DOBEŠ, P.; BARTL, V.; HEROUT, A. Learning Feature Aggregation in Temporal Domain for Re-Identification. COMPUTER VISION AND IMAGE UNDERSTANDING, 2020, vol. 192, no. 11, p. 1-12. ISSN: 1077-3142.
Detail

BARTL, V.; JURÁNEK, R.; ŠPAŇHEL, J.; HEROUT, A. PlaneCalib: Automatic Camera Calibration by Multiple Observations of Rigid Objects on Plane. In 2020 International Conference on Digital Image Computing: Techniques and Applications (DICTA). Melbourne: Institute of Electrical and Electronics Engineers, 2020. p. 1-8. ISBN: 978-1-7281-9108-9.
Detail

BARTL, V.; HEROUT, A. OptInOpt: Dual Optimization for Automatic Camera Calibration by Multi-Target Observations. In 16th IEEE International Conference on Advanced Video and Signal-based Surveillance. Taipei: Institute of Electrical and Electronics Engineers, 2019. p. 1-8. ISBN: 978-1-7281-0990-9.
Detail

DOBEŠ, P.; ŠPAŇHEL, J.; BARTL, V.; JURÁNEK, R.; HEROUT, A. Density-Based Vehicle Counting with Unsupervised Scale Selection. In Digital Image Computing: Techniques and Applications 2020. Melbourne: Institute of Electrical and Electronics Engineers, 2020. p. 1-8. ISBN: 978-1-7281-9108-9.
Detail

ŠPAŇHEL, J.; BARTL, V.; JURÁNEK, R.; HEROUT, A. Vehicle Re-Identification and Multi-Camera Tracking in Challenging City-Scale Environment. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops. Long Beach: IEEE Computer Society, 2019. p. 150-158. ISSN: 2160-7516.
Detail

FOLENTA, J.; ŠPAŇHEL, J.; BARTL, V.; HEROUT, A. Determining Vehicle Turn Counts at Multiple Intersections by Separated Vehicle Classes Using CNNs. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops. Seattle, WA: IEEE Computer Society, 2020. p. 2544-2549. ISBN: 978-1-7281-9360-1. ISSN: 2160-7516.
Detail

ŠPAŇHEL, J.; BARTL, V.; JURÁNEK, R.; HEROUT, A.: Vehicle-ReID; Vehicle Re-Identification Software. https://medusa.fit.vutbr.cz/traffic/?p=580. URL: https://medusa.fit.vutbr.cz/traffic/?p=580. (software)
Detail

BARTL, V.; ŠPAŇHEL, J.; JURÁNEK, R.; HEROUT, A.: AutoCalib-Rigid; Automatic Camera Calibration. https://github.com/BUT-GRAPH-at-FIT/Automatic-Camera-Calibration. URL: https://github.com/BUT-GRAPH-at-FIT/Automatic-Camera-Calibration. (software)
Detail