Project detail
AI4CSM - Automotive Intelligence for/at Connected Shared Mobility
Duration: 1.5.2021 — 28.2.2025
Funding resources
Ministerstvo školství, mládeže a tělovýchovy ČR - Společná technologická iniciativa ECSEL
Evropská unie - Horizon 2020
On the project
AI4CSM rewrite the auto industry’s competitive rules. Today, software, large computing power and advanced sensors,increasingly step into that role; they enable most modern innovations, from efficiency to connectivity, from autonomousdriving to electrification and new mobility solutions. The AI4CSM project aims at developing the new ECS architecture forelectric, connected and automated vehicles for the future mass market, enabled by embedded intelligence and functionalintegration for connected shared Mobility. AI4CSM will drive technology developments in the field of integrating newintelligent solutions in the propulsion, energy, perception, connectivity and brain domains of vehicles. Through this, AI4CSM will reinforce the user acceptance, affordability by convenience and services for the major transition to a diverse mobility.The outcome of AI4CSM is incorporating all the 4 major trends (electrification, standardization, automatization anddigitalization) which foster the progress and define the transition of the automotive industry and mobility. The climateneutrality, zero pollution Europe, sustainable transport and circular economy will be driven by the outcome of AI4CSM.
Mark
101007326/8A21013
Default language
English
People responsible
Václavek Pavel, prof. Ing., Ph.D. - principal person responsible
Bartík Ondřej, Ing. - fellow researcher
Beneš Petr, doc. Ing., Ph.D. - fellow researcher
Buchta Luděk, Ing., Ph.D. - fellow researcher
Cihlář Miloš, Ing. - fellow researcher
Dokoupil Jakub, Ing., Ph.D. - fellow researcher
Doseděl Martin, Ing. - fellow researcher
Fialka Jiří, Ing., Ph.D. - fellow researcher
Gábrlík Petr, Ing., Ph.D. - fellow researcher
Hnidka Jakub, Ing., Ph.D. - fellow researcher
Horeličan Tomáš, Ing. - fellow researcher
Chromý Adam, Ing., Ph.D. - fellow researcher
Jílek Tomáš, Ing., Ph.D. - fellow researcher
Klusáček Stanislav, Ing., Ph.D. - fellow researcher
Kopečný Ladislav, Ing. - fellow researcher
Kozovský Matúš, Ing., Ph.D. - fellow researcher
Kozubík Michal, Ing. - fellow researcher
Lázna Tomáš, Ing., Ph.D. - fellow researcher
Otava Lukáš, Ing., Ph.D. - fellow researcher
Pohl Lukáš, Ing., Ph.D. - fellow researcher
Units
Cybernetics and Robotics
- responsible department (16.2.2021 - not assigned)
Cybernetics in Material Science
- responsible department (16.4.2020 - 16.2.2021)
Cybernetics and Robotics
- beneficiary (1.6.2021 - 31.5.2024)
Results
OTAVA, L., KOZOVSKÝ, M., VESELÝ, L.: 3L 6ph inverter v1.0; Three-level six-phase 800 V inverter. CEITEC Vysoké učení technické v Brně Purkyňova 656/123 Brno - Královo Pole 612 00. (funkční vzorek)
Detail
KOZOVSKÝ, M., OTAVA, L.: CDS v1.0; Cognitive diagnostic system (CDS). CEITEC Vysoké učení technické v Brně Purkyňova 656/123 Brno - Královo Pole 612 00. URL: https://ai4csm.ceitec.cz/en/results/cognitive-diagnostic-system/. (software)
Detail
OTAVA, L., KOZOVSKÝ, M.: MC+DIAG 3L 6phase SW v1.0; Motor control and diagnostic software for six-phase three-level inverter. CEITEC Vysoké učení technické v Brně Purkyňova 656/123 Brno - Královo Pole 612 00. URL: https://https://ai4csm.ceitec.cz/en/results/motor-control-and-diagnostic-software-for-six-phase-three-level-inverter/. (software)
Detail
SVĚDIROH, S.; CHROMÝ, A.; ŽALUD, L.: ASGARD-RTFMAP; System for building an object-based 3D map of surroundings and its sharing among vehicles in the real-time (ASGARD-RTFMAP). CEITEC, Purkyňova 123, B1.08. URL: https://ai4csm.ceitec.cz/vysledky/. (software)
Detail
DOSEDĚL, M.; FIALKA, J.; HNIDKA, J.; HAVRÁNEK, Z.: Bearing Test Stand v1.0; Test stand for accelerated lifetime testing of small bearings. Vysoké učení technické v Brně, CEITEC VUT Laboratoř pokročilých senzorů, B1.04 Purkyňova 656/123 612 00 Brno. URL: http://ai4csm.ceitec.cz/vysledky/BearingTestStand. (funkční vzorek)
Detail
DOSEDĚL, M.; HAVRÁNEK, Z.; HNIDKA, J.: Smart Diagnostic Sensor v2.1; Diagnostic sensor for automotive usage. Vysoké učení technické v Brně, CEITEC VUT Laboratoř pokročilých senzorů, B1.04 Purkyňova 656/123 612 00 Brno. URL: http://ai4csm.ceitec.cz/vysledky/SDS_v2. (funkční vzorek)
Detail
BARTÍK, O. Parameter Estimation and Control Structure Synthesis for Oscillatory Mechanical Two-Mass Systems. IEEE Access, 2024, vol. 12, no. May, p. 77764-77773. ISSN: 2169-3536.
Detail
SVĚDIROH, S.; ŽALUD, L. Atlas Fusion 2.0 - A ROS2 Based Real-Time Sensor Fusion Framework. In Lecture Notes in Computer Science. 14615. Springer Nature, 2024. p. 1-13. ISBN: 9783031713965.
Detail
ZEZULA, L.; KOZOVSKÝ, M.; BLAHA, P. Diagnostics of Interturn Short Circuits in PMSMs With Online Fault Indicators Estimation. IEEE Transactions on Industrial Electronics, 2024, vol. 71, no. 11, p. 15001-15011. ISSN: 0278-0046.
Detail
BUCHTA, L.; KOZOVSKÝ, M.;. Online neural network application for compensation of the VSI voltage nonlinearities. In IECON 2023- 49th Annual Conference of the IEEE Industrial Electronics Society. Singapur: IEEE, 2023. p. 1-6. ISBN: 979-8-3503-3182-0.
Detail
KOZOVSKÝ, M.; BUCHTA, L.; BLAHA, P. Implementation of ANN for PMSM interturn short-circuit detection in the embedded system. In IECON 2023- 49th Annual Conference of the IEEE Industrial Electronics Society. Singapur: IEEE, 2023. p. 1-6. ISBN: 979-8-3503-3182-0.
Detail
ZEZULA, L.; BLAHA, P. Discrete-Time Modeling of PMSM for Parametric Estimation and Model Predictive Control Tasks. In IECON 2023: 49th Annual Conference of the IEEE Industrial Electronics Society. IEEE, 2023. ISBN: 979-8-3503-3182-0.
Detail
HAVRÁNEK, Z.; KOPEČNÝ, L.; DOSEDĚL, M.; HNIDKA, J.: HYBRID-ELDIAG; Module for detection of electrical fault in the propulsion using mechanical and acoustical quantities. Brno University of Technology Central European Institute of Technology Laboratory B1.04 Purkynova 656/123 612 00 Brno. URL: http://ai4csm.ceitec.cz/vysledky. (software)
Detail
KRATOCHVÍLA, L.; ZEMČÍK, T.; BILÍK, Š.; CHROMÝ, A.: ASGARD-CLASS; System for detection and classification of obstacles through data-fusion of lidar and RGB cameras (ASGARD-CLASS). CEITEC, Purkyňova 123, B1.08. URL: https://ai4csm.ceitec.cz/vysledky. (software)
Detail
Responsibility: Václavek Pavel, prof. Ing., Ph.D.