Project detail

Bio-inspired methods for resource aware computer system design

Duration: 29.09.2020 — 28.09.2024

Funding resources

Evropská unie - European Cooperation in Science and Technology (COST)

- whole funder (2020-09-29 - 2024-09-28)

On the project

We propose to implement and evaluate automated bio-inspired design methods, and components generated by these methods, in the context of research into compromise solutions that make different use of resources addressed by CERCIRAS. Having these methods, we will work towards better understanding, management and utilization of resources by users from the academia and industry.

Description in Czech
Zaměříme se na implementaci a vyhodnocení biologií inspirovaných návrhových metod a komponent vygenerovaných pomocí těchto metod, a to v kontextu výzkumu kompromisních řešení různě využívajících dostupné zdroje, které jsou studovány v CERCIRAS. Za pomoci těchto metod se budeme snažit o lepší porozumění, řízení a využití zdrojů jak akademickými, tak i průmyslovými uživateli.

Keywords
Bio-inspired methods, Resource-aware computing, Information and program analysis, Predictable, safe and reliable computing, Knowledge transfer

Default language

English

People responsible

Bidlo Michal, doc. Ing., Ph.D. - fellow researcher
Mrázek Vojtěch, Ing., Ph.D. - fellow researcher
Vašíček Zdeněk, doc. Ing., Ph.D. - fellow researcher
Sekanina Lukáš, prof. Ing., Ph.D. - principal person responsible

Units

Department of Computer Systems
- beneficiary (2020-05-25 - 2024-09-28)
Institute of Automation and Computer Science
- co-beneficiary (2020-05-25 - 2024-09-28)

Results

JŮZA, T.; SEKANINA, L. GPAM: Genetic Programming with Associative Memory. In 26th European Conference on Genetic Programming (EuroGP) Held as Part of EvoStar. Lecture Notes in Computer Science. LNCS. Cham: Springer Nature Switzerland AG, 2023. p. 68-83. ISBN: 978-3-031-29572-0. ISSN: 0302-9743.
Detail

MATOUŠEK, R.; LOZI, R.; HŮLKA, T. Stabilization of Higher Periodic Orbits of the Lozi and Hénon Maps using Meta-evolutionary Approaches. In 2021 IEEE Congress on Evolutionary Computation (CEC). IEEE Congress on Evolutionary Computation (CEC). Kraków, Poland: IEEE, 2021. p. 572-579. ISBN: 978-1-7281-8393-0.
Detail

Link