Project detail
Interpretable Sparse Artificial Neural Networks – for Spectroscopic Data
Duration: 1.3.2023 — 28.2.2024
Funding resources
Vysoké učení technické v Brně - Vnitřní projekty VUT
On the project
Artificial neural networks (not only) in spectroscopy suffer from poor interpretability due to an extensive number of parameters in the model. We propose an entirely new perspective on interpretability through lottery tickets (i.e., tiny, sparse networks with high performance). We will exploit lottery tickets for interpretability as they dramatically reduce the number of parameters and preserve the spatial structure of the data. Also, we will study a potential of lottery tickets for embedded spectroscopic systems (e.g., satellites, rovers).
Mark
CEITEC VUT-J-23-8332
Default language
Czech
People responsible
Vrábel Jakub, Ing., Ph.D. - principal person responsible
Pořízka Pavel, doc. Ing., Ph.D. - fellow researcher
Units
Advanced instrumentation and methods for material characterization
- responsible department (6.3.2023 - not assigned)
Central European Institute of Technology BUT
- responsible department (29.1.2023 - 6.3.2023)
Advanced instrumentation and methods for material characterization
- beneficiary (1.1.2023 - 31.12.2023)
Results
SAEIDFIROUZEH, H.; KUBELÍK, P.; LAITL, V.; KŘIVKOVÁ, A.; VRÁBEL, J.; RAMMELKAMP, K.; SCHRÖDER, S.; GORNUSHKIN, I.; KÉPEŠ, E.; ŽABKA, J.; FERUS, M.; POŘÍZKA, P.; KAISER, J. Laser-induced breakdown spectroscopy in space applications: Review and prospects. TRAC-TRENDS IN ANALYTICAL CHEMISTRY, 2024, vol. 181, no. B, p. 1-22. ISSN: 1879-3142.
Detail
Responsibility: Vrábel Jakub, Ing., Ph.D.