Přístupnostní navigace
E-application
Search Search Close
Project detail
Duration: 01.01.1997 — 31.12.1999
Funding resources
Czech Science Foundation - Standardní projekty
- whole funder
On the project
Description in EnglishThe main aim of the first and third themes is development of methods of solving convection - diffusion problems. The first case concerns problems of Stefan tape with convective term and nonlinear and degenerate diffusion ( a motive : continuous casting of steel ). The convective term considerably prevails the diffusion term near the interface, separating the liquid and solid phases, and thus difficultes of solving increase significantly. The third theme concernsnumerical solving Navier-Stokes and Eulerequations. A special attention will be devoted to constructing a robus scheme for Euler equations. In both themes a convenient implementationof the method of characteristics will be used. The second theme is mathematical modelling of hysteresis material swith perodic coefficients and hysteresis operator. The aim is a homogenization of these equations and development of corresponding numerical methods.
Mark
GA201/97/0153
Default language
Czech
People responsible
Ženíšek Alexander, prof. RNDr., DrSc. - principal person responsible
Units
Faculty of Mechanical Engineering- beneficiary (1997-01-01 - 1999-12-31)
Results
LUKÁČOVÁ, M.; WARNECKE, G.; MORTON, K. Evolution Galerkin Methods for Multidimensional Hyperbolic Systems. In Proceedings of 2nd European Conference on Numerical methods and Advanced Applications. Singapore: World Scientific Publishing Company, 1999. p. 289 ( p.)ISBN: 981-02-3546-1.Detail
LUKÁČOVÁ, M., MORTON, K., WARNECKE, G. Finite Volume Evolution Galerkin Methods for Multidimensional Hyperbolic Systems. In Finite Volumes for Complex Applications II. Paris: Hermes, 1999. p. 445 ( p.)ISBN: 2-7462-0057-0.Detail
FRANCŮ, J.; KREJČÍ, P. Homogenization of scalar wave equations with hysteresis. Continuum Mech Therm, 1999, vol. 11, no. 6, p. 371-390. ISSN: 0935-1175.Detail
FRANCŮ, J. Modelling of the Czochralski flow. Abstract and Applied Analysis, 1998, vol. 3, no. 1-2, p. 1-40. ISSN: 1085-3375.Detail
ŽENÍŠEK, A. Surface integral and Gauss-Ostrogradskij theorem from the viewpoint of applications (Appl. Math. 44, No. 3). 1. 1. Praha: Mathematical Institute, Academy of Sciences of the, 1999. 73 p. ISBN: 0862-7940.Detail
ŽENÍŠEK, A., HODEROVÁ, J. Semiregular Hermite tetrahedral finite elements. Application of Mathematics, 2001, vol. 2001, no. 40, p. 295-315. ISSN: 0373-6725.Detail
ZLÁMALOVÁ, J. Semiregular finite elements in solving some nonlinear problem. APPLICATIONS OF MATHEMATICS, 2001, vol. 46, no. 1, p. 53-77. ISSN: 0862-7940.Detail
FRANCŮ, J. On modelling of Czochralski flow, the case of non plane free surface. In Applied nonlinear analysis. Nonlinear Analysis. New York: Kluwer Academic, 1999. p. 133 ( p.)ISBN: 0-306-46303-2.Detail
LUKÁČOVÁ, M. Bipolar Isothermal Non-Newtonian Compressible Fluids. Journal of Mathematical Analysis and Application, 1998, no. 225, p. 168 ( p.)ISSN: 0022-247X.Detail