Přístupnostní navigace
E-application
Search Search Close
Publication detail
ŘEHÁK, P.
Original Title
On asymptotic relationships between two higher order dynamic equations on time scales
Type
journal article in Web of Science
Language
English
Original Abstract
We consider the $n$-th order dynamic equations $x^{\Delta^n}\!+p_1(t)x^{\Delta^{n-1}}+\cdots+p_n(t)x=0$ and $y^{\Delta^n}+p_1(t)y^{\Delta^{n-1}}+\cdots+p_n(t)y=f(t,y(\tau(t)))$ on a time scale $\mathbb{T}$, where $\tau$ is a composition of the forward jump operators, $p_i$ are real rd-continuous functions and $f$ is a continuous function; $\mathbb{T}$ is assumed to be unbounded above. We establish conditions that guarantee asymptotic equivalence between some solutions of these equations. No restriction is placed on whether the solutions are oscillatory or nonoscillatory. Applications to second order Emden-Fowler type dynamic equations and Euler type dynamic equations are shown.
Keywords
higher order dynamic equation; time scale; asymptotic equivalence
Authors
Released
23. 4. 2017
Publisher
Elsevier
ISBN
0893-9659
Periodical
APPLIED MATHEMATICS LETTERS
Year of study
2017
Number
73
State
United States of America
Pages from
84
Pages to
90
Pages count
7
URL
http://www.sciencedirect.com/science/article/pii/S0893965917300502
BibTex
@article{BUT135851, author="Pavel {Řehák}", title="On asymptotic relationships between two higher order dynamic equations on time scales", journal="APPLIED MATHEMATICS LETTERS", year="2017", volume="2017", number="73", pages="84--90", doi="10.1016/j.aml.2017.02.013", issn="0893-9659", url="http://www.sciencedirect.com/science/article/pii/S0893965917300502" }