Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
ŘEHÁK, P.
Originální název
On asymptotic relationships between two higher order dynamic equations on time scales
Typ
článek v časopise ve Web of Science, Jimp
Jazyk
angličtina
Originální abstrakt
We consider the $n$-th order dynamic equations $x^{\Delta^n}\!+p_1(t)x^{\Delta^{n-1}}+\cdots+p_n(t)x=0$ and $y^{\Delta^n}+p_1(t)y^{\Delta^{n-1}}+\cdots+p_n(t)y=f(t,y(\tau(t)))$ on a time scale $\mathbb{T}$, where $\tau$ is a composition of the forward jump operators, $p_i$ are real rd-continuous functions and $f$ is a continuous function; $\mathbb{T}$ is assumed to be unbounded above. We establish conditions that guarantee asymptotic equivalence between some solutions of these equations. No restriction is placed on whether the solutions are oscillatory or nonoscillatory. Applications to second order Emden-Fowler type dynamic equations and Euler type dynamic equations are shown.
Klíčová slova
higher order dynamic equation; time scale; asymptotic equivalence
Autoři
Vydáno
23. 4. 2017
Nakladatel
Elsevier
ISSN
0893-9659
Periodikum
APPLIED MATHEMATICS LETTERS
Ročník
2017
Číslo
73
Stát
Spojené státy americké
Strany od
84
Strany do
90
Strany počet
7
URL
http://www.sciencedirect.com/science/article/pii/S0893965917300502
BibTex
@article{BUT135851, author="Pavel {Řehák}", title="On asymptotic relationships between two higher order dynamic equations on time scales", journal="APPLIED MATHEMATICS LETTERS", year="2017", volume="2017", number="73", pages="84--90", doi="10.1016/j.aml.2017.02.013", issn="0893-9659", url="http://www.sciencedirect.com/science/article/pii/S0893965917300502" }