Přístupnostní navigace
E-application
Search Search Close
Publication detail
KLAŠKA, J. SKULA, L.
Original Title
LAW OF INERTIA FOR THE FACTORIZATION OF CUBIC POLYNOMIALS - THE IMAGINARY CASE
Type
journal article in Web of Science
Language
English
Original Abstract
Let $D\in \Bbb Z$, $D > 0$ be square-free, $3\nmid D$, and $3 \nmid h(-3D)$ where $h(-3D)$ is the class number of $\Bbb Q(\sqrt(-3D))$. We prove that all cubic polynomials $f(x) = x^3+ax^2+bx+c\in \Bbb Z[x]$ with a discriminant $D$ have the same type of factorization over any Galois field $\Bbb F_p$ where $p$ is a prime, $p > 3$. Moreover, we show that any polynomial $f(x)$ with such a discriminant $D$ has a rational integer root. A complete discussion of the case $D = 0$ is also included.
Keywords
cubic polynomial, factorization, Galois field
Authors
KLAŠKA, J.; SKULA, L.
Released
1. 6. 2017
Publisher
Utilitas Mathematica Publishing
Location
Canada
ISBN
0315-3681
Periodical
UTILITAS MATHEMATICA
Year of study
103
Number
2
State
Pages from
99
Pages to
109
Pages count
11
URL
https://www.degruyter.com/document/doi/10.1515/ms-2016-0248/html
BibTex
@article{BUT136560, author="Jiří {Klaška} and Ladislav {Skula}", title="LAW OF INERTIA FOR THE FACTORIZATION OF CUBIC POLYNOMIALS - THE IMAGINARY CASE", journal="UTILITAS MATHEMATICA", year="2017", volume="103", number="2", pages="99--109", issn="0315-3681", url="https://www.degruyter.com/document/doi/10.1515/ms-2016-0248/html" }