Detail publikace
LAW OF INERTIA FOR THE FACTORIZATION OF CUBIC POLYNOMIALS - THE IMAGINARY CASE
KLAŠKA, J. SKULA, L.
Originální název
LAW OF INERTIA FOR THE FACTORIZATION OF CUBIC POLYNOMIALS - THE IMAGINARY CASE
Typ
článek v časopise ve Web of Science, Jimp
Jazyk
angličtina
Originální abstrakt
Let $D\in \Bbb Z$, $D > 0$ be square-free, $3\nmid D$, and $3 \nmid h(-3D)$ where $h(-3D)$ is the class number of $\Bbb Q(\sqrt(-3D))$. We prove that all cubic polynomials $f(x) = x^3+ax^2+bx+c\in \Bbb Z[x]$ with a discriminant $D$ have the same type of factorization over any Galois field $\Bbb F_p$ where $p$ is a prime, $p > 3$. Moreover, we show that any polynomial $f(x)$ with such a discriminant $D$ has a rational integer root. A complete discussion of the case $D = 0$ is also included.
Klíčová slova
cubic polynomial, factorization, Galois field
Autoři
KLAŠKA, J.; SKULA, L.
Vydáno
1. 6. 2017
Nakladatel
Utilitas Mathematica Publishing
Místo
Canada
ISSN
0315-3681
Periodikum
UTILITAS MATHEMATICA
Ročník
103
Číslo
2
Stát
Kanada
Strany od
99
Strany do
109
Strany počet
11
URL
BibTex
@article{BUT136560,
author="Jiří {Klaška} and Ladislav {Skula}",
title="LAW OF INERTIA FOR THE FACTORIZATION OF CUBIC POLYNOMIALS - THE IMAGINARY CASE",
journal="UTILITAS MATHEMATICA",
year="2017",
volume="103",
number="2",
pages="99--109",
issn="0315-3681",
url="https://www.degruyter.com/document/doi/10.1515/ms-2016-0248/html"
}