Publication detail
Linear Difference Weakly Delayed Systems, the Case of Complex Conjugate Eigenvalues of the Matrix of Non-Delayed Terms
ŠAFAŘÍK, J. DIBLÍK, J.
Original Title
Linear Difference Weakly Delayed Systems, the Case of Complex Conjugate Eigenvalues of the Matrix of Non-Delayed Terms
Type
conference paper
Language
English
Original Abstract
A linear weakly delayed discrete system with single delay $$x(k+1) = Ax(k) + Bx(k-m),\ k = 0, 1, \dots,$$ in $\mathbb{R}^3$ is considered, where $A$ and $B$ are $3 \times 3$ matrices and $m \geq 1$ is an integer. Assuming that the characteristic equation of the matrix $A$ has a pair of complex conjugate roots, the general solution of the given system is constructed.
Keywords
Discrete system, weakly delayed system, linear system, initial problem, single delay
Authors
ŠAFAŘÍK, J.; DIBLÍK, J.
Released
18. 12. 2017
Publisher
Univerzita obrany v Brně
Location
Brno
ISBN
978-80-7582-026-6
Book
MITAV 2017 (Matematika, informační technologie a aplikované vědy), Post-conference proceedings of extended versions of selected papers
Edition number
1
Pages from
235
Pages to
247
Pages count
262
URL
BibTex
@inproceedings{BUT142577,
author="Jan {Šafařík} and Josef {Diblík}",
title="Linear Difference Weakly Delayed Systems, the Case of Complex Conjugate Eigenvalues of the Matrix of Non-Delayed Terms",
booktitle="MITAV 2017 (Matematika, informační technologie a aplikované vědy), Post-conference proceedings of extended versions of selected papers",
year="2017",
number="1",
pages="235--247",
publisher="Univerzita obrany v Brně",
address="Brno",
isbn="978-80-7582-026-6",
url="http://mitav.unob.cz/"
}