Detail publikace

Linear Difference Weakly Delayed Systems, the Case of Complex Conjugate Eigenvalues of the Matrix of Non-Delayed Terms

ŠAFAŘÍK, J. DIBLÍK, J.

Originální název

Linear Difference Weakly Delayed Systems, the Case of Complex Conjugate Eigenvalues of the Matrix of Non-Delayed Terms

Typ

článek ve sborníku ve WoS nebo Scopus

Jazyk

angličtina

Originální abstrakt

A linear weakly delayed discrete system with single delay $$x(k+1) = Ax(k) + Bx(k-m),\ k = 0, 1, \dots,$$ in $\mathbb{R}^3$ is considered, where $A$ and $B$ are $3 \times 3$ matrices and $m \geq 1$ is an integer. Assuming that the characteristic equation of the matrix $A$ has a pair of complex conjugate roots, the general solution of the given system is constructed.

Klíčová slova

Discrete system, weakly delayed system, linear system, initial problem, single delay

Autoři

ŠAFAŘÍK, J.; DIBLÍK, J.

Vydáno

18. 12. 2017

Nakladatel

Univerzita obrany v Brně

Místo

Brno

ISBN

978-80-7582-026-6

Kniha

MITAV 2017 (Matematika, informační technologie a aplikované vědy), Post-conference proceedings of extended versions of selected papers

Číslo edice

1

Strany od

235

Strany do

247

Strany počet

262

URL

BibTex

@inproceedings{BUT142577,
  author="Jan {Šafařík} and Josef {Diblík}",
  title="Linear Difference Weakly Delayed Systems, the Case of Complex Conjugate Eigenvalues of the Matrix of Non-Delayed Terms",
  booktitle="MITAV 2017 (Matematika, informační technologie a aplikované vědy), Post-conference proceedings of extended versions of selected papers",
  year="2017",
  number="1",
  pages="235--247",
  publisher="Univerzita obrany v Brně",
  address="Brno",
  isbn="978-80-7582-026-6",
  url="http://mitav.unob.cz/"
}