Přístupnostní navigace
E-application
Search Search Close
Publication detail
BAŠTINEC, J. DIBLÍK, J. HALFAROVÁ, H.
Original Title
Positive solutions of nonlinear discrete equations
Type
conference paper
Language
English
Original Abstract
A delayed discrete equation $\Delta x(n)=f(n,x(n),x(n-1),\dots,x(n-k))$ is considered where $n=a+k,a+k+1,\dots$ and $a\in\mathbb{N}$. It is proved that, given some conditions for $f,$ there exists a positive solution $x=x(n)$ for $n\to \infty$. The rate of convergence of a positive solution is estimated as well.
Keywords
Discrete equation, delayed equation, asymptotic decomposition, positive solution.
Authors
BAŠTINEC, J.; DIBLÍK, J.; HALFAROVÁ, H.
Released
5. 2. 2019
Publisher
Slovak University of Technology
Location
Bratislava
ISBN
978-80-227-4884-1
Book
18th conference on aplied mathematics. Aplimat 2019 Proceedings.
Edition number
1
Pages from
23
Pages to
30
Pages count
8
BibTex
@inproceedings{BUT157460, author="Jaromír {Baštinec} and Josef {Diblík} and Hana {Boháčková}", title="Positive solutions of nonlinear discrete equations", booktitle="18th conference on aplied mathematics. Aplimat 2019 Proceedings.", year="2019", number="1", pages="23--30", publisher="Slovak University of Technology", address="Bratislava", isbn="978-80-227-4884-1" }