Detail publikace

Positive solutions of nonlinear discrete equations

BAŠTINEC, J. DIBLÍK, J. HALFAROVÁ, H.

Originální název

Positive solutions of nonlinear discrete equations

Typ

článek ve sborníku ve WoS nebo Scopus

Jazyk

angličtina

Originální abstrakt

A delayed discrete equation $\Delta x(n)=f(n,x(n),x(n-1),\dots,x(n-k))$ is considered where $n=a+k,a+k+1,\dots$ and $a\in\mathbb{N}$. It is proved that, given some conditions for $f,$ there exists a positive solution $x=x(n)$ for $n\to \infty$. The rate of convergence of a positive solution is estimated as well.

Klíčová slova

Discrete equation, delayed equation, asymptotic decomposition, positive solution.

Autoři

BAŠTINEC, J.; DIBLÍK, J.; HALFAROVÁ, H.

Vydáno

5. 2. 2019

Nakladatel

Slovak University of Technology

Místo

Bratislava

ISBN

978-80-227-4884-1

Kniha

18th conference on aplied mathematics. Aplimat 2019 Proceedings.

Číslo edice

1

Strany od

23

Strany do

30

Strany počet

8

BibTex

@inproceedings{BUT157460,
  author="Jaromír {Baštinec} and Josef {Diblík} and Hana {Boháčková}",
  title="Positive solutions of nonlinear discrete equations",
  booktitle="18th conference  on aplied mathematics. Aplimat 2019 Proceedings.",
  year="2019",
  number="1",
  pages="23--30",
  publisher="Slovak University of Technology",
  address="Bratislava",
  isbn="978-80-227-4884-1"
}