Přístupnostní navigace
E-application
Search Search Close
Publication detail
ŘEHÁK, P. YAMAOKA, N. ITO, B.
Original Title
Applications of iterated logarithm functions on time scales to Riemann-Weber type equations
Type
journal article in Web of Science
Language
English
Original Abstract
The aim of this paper is to give general solutions of second-order linear dynamic equations on time scales, which are related to Riemann-Weber type differential equations. The general solutions naturally include iterated logarithm functions on time scales. Using their properties, we obtain complete information on oscillation for the equations, which are important for comparison purposes.
Keywords
Time scales calculus; iterated logarithm functions; Euler type equations; Riemann-Weber type equations; oscillation; oscillation constant.
Authors
ŘEHÁK, P.; YAMAOKA, N.; ITO, B.
Released
13. 1. 2020
ISBN
0002-9939
Periodical
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY
Year of study
148
Number
4
State
United States of America
Pages from
1611
Pages to
1624
Pages count
14
URL
https://www.ams.org/journals/proc/2020-148-04/S0002-9939-2020-14812-5/
BibTex
@article{BUT162018, author="Pavel {Řehák} and Naoto {Yamaoka} and Baku {Ito}", title="Applications of iterated logarithm functions on time scales to Riemann-Weber type equations", journal="PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY", year="2020", volume="148", number="4", pages="1611--1624", doi="10.1090/proc/14812", issn="0002-9939", url="https://www.ams.org/journals/proc/2020-148-04/S0002-9939-2020-14812-5/" }