Detail publikace

Applications of iterated logarithm functions on time scales to Riemann-Weber type equations

ŘEHÁK, P. YAMAOKA, N. ITO, B.

Originální název

Applications of iterated logarithm functions on time scales to Riemann-Weber type equations

Typ

článek v časopise ve Web of Science, Jimp

Jazyk

angličtina

Originální abstrakt

The aim of this paper is to give general solutions of second-order linear dynamic equations on time scales, which are related to Riemann-Weber type differential equations. The general solutions naturally include iterated logarithm functions on time scales. Using their properties, we obtain complete information on oscillation for the equations, which are important for comparison purposes.

Klíčová slova

Time scales calculus; iterated logarithm functions; Euler type equations; Riemann-Weber type equations; oscillation; oscillation constant.

Autoři

ŘEHÁK, P.; YAMAOKA, N.; ITO, B.

Vydáno

13. 1. 2020

ISSN

0002-9939

Periodikum

PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY

Ročník

148

Číslo

4

Stát

Spojené státy americké

Strany od

1611

Strany do

1624

Strany počet

14

URL

BibTex

@article{BUT162018,
  author="Pavel {Řehák} and Naoto {Yamaoka} and Baku {Ito}",
  title="Applications of iterated logarithm functions on time scales to Riemann-Weber type equations",
  journal="PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY",
  year="2020",
  volume="148",
  number="4",
  pages="1611--1624",
  doi="10.1090/proc/14812",
  issn="0002-9939",
  url="https://www.ams.org/journals/proc/2020-148-04/S0002-9939-2020-14812-5/"
}