Přístupnostní navigace
E-application
Search Search Close
Publication detail
NOVOTNÁ, P.
Original Title
Atrial Fibrillation Classification Using Deep Convolutional Network
Type
article in a collection out of WoS and Scopus
Language
English
Original Abstract
We propose the usage of three deep convolutional neural networks architectures for classification of a single lead electrocardiogram (ECG) recordings and evaluate them on the atrial fibrillation (AFIB) classification, for which data set was provided by the Department of Biomedical Engineering, BUT. The compared networks are based on ResNet, VGG net and AlexNet. Single lead signals are transformed into the form of spectrogram. AFIB data was augmented for the purpose of similar size of both respected classes and for successful classification. The most successful architecture, based on AlexNet, was found to perform obtaining an accuracy of 92 \% and F1 score of 56 \% on the hidden testing set.
Keywords
ECG; atrial fibrillation; signal processing classification; deep learning, neural networks; convolution; resnet; alexnet; vgg
Authors
Released
23. 4. 2020
Publisher
Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií
Location
Brno
ISBN
978-80-214-5867-3
Book
Proceedings I of the 26th Conference STUDENT EEICT 2020
Edition
1
Edition number
Pages from
345
Pages to
349
Pages count
5
URL
https://www.fekt.vut.cz/conf/EEICT/archiv/sborniky/EEICT_2020_sbornik_1.pdf
BibTex
@inproceedings{BUT163729, author="Petra {Novotná}", title="Atrial Fibrillation Classification Using Deep Convolutional Network", booktitle="Proceedings I of the 26th Conference STUDENT EEICT 2020", year="2020", series="1", number="1", pages="345--349", publisher="Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií", address="Brno", isbn="978-80-214-5867-3", url="https://www.fekt.vut.cz/conf/EEICT/archiv/sborniky/EEICT_2020_sbornik_1.pdf" }