Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
NOVOTNÁ, P.
Originální název
Atrial Fibrillation Classification Using Deep Convolutional Network
Typ
článek ve sborníku mimo WoS a Scopus
Jazyk
angličtina
Originální abstrakt
We propose the usage of three deep convolutional neural networks architectures for classification of a single lead electrocardiogram (ECG) recordings and evaluate them on the atrial fibrillation (AFIB) classification, for which data set was provided by the Department of Biomedical Engineering, BUT. The compared networks are based on ResNet, VGG net and AlexNet. Single lead signals are transformed into the form of spectrogram. AFIB data was augmented for the purpose of similar size of both respected classes and for successful classification. The most successful architecture, based on AlexNet, was found to perform obtaining an accuracy of 92 \% and F1 score of 56 \% on the hidden testing set.
Klíčová slova
ECG; atrial fibrillation; signal processing classification; deep learning, neural networks; convolution; resnet; alexnet; vgg
Autoři
Vydáno
23. 4. 2020
Nakladatel
Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií
Místo
Brno
ISBN
978-80-214-5867-3
Kniha
Proceedings I of the 26th Conference STUDENT EEICT 2020
Edice
1
Číslo edice
Strany od
345
Strany do
349
Strany počet
5
URL
https://www.fekt.vut.cz/conf/EEICT/archiv/sborniky/EEICT_2020_sbornik_1.pdf
BibTex
@inproceedings{BUT163729, author="Petra {Novotná}", title="Atrial Fibrillation Classification Using Deep Convolutional Network", booktitle="Proceedings I of the 26th Conference STUDENT EEICT 2020", year="2020", series="1", number="1", pages="345--349", publisher="Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií", address="Brno", isbn="978-80-214-5867-3", url="https://www.fekt.vut.cz/conf/EEICT/archiv/sborniky/EEICT_2020_sbornik_1.pdf" }