Detail publikace

Atrial Fibrillation Classification Using Deep Convolutional Network

NOVOTNÁ, P.

Originální název

Atrial Fibrillation Classification Using Deep Convolutional Network

Typ

článek ve sborníku mimo WoS a Scopus

Jazyk

angličtina

Originální abstrakt

We propose the usage of three deep convolutional neural networks architectures for classification of a single lead electrocardiogram (ECG) recordings and evaluate them on the atrial fibrillation (AFIB) classification, for which data set was provided by the Department of Biomedical Engineering, BUT. The compared networks are based on ResNet, VGG net and AlexNet. Single lead signals are transformed into the form of spectrogram. AFIB data was augmented for the purpose of similar size of both respected classes and for successful classification. The most successful architecture, based on AlexNet, was found to perform obtaining an accuracy of 92 \% and F1 score of 56 \% on the hidden testing set.

Klíčová slova

ECG; atrial fibrillation; signal processing classification; deep learning, neural networks; convolution; resnet; alexnet; vgg

Autoři

NOVOTNÁ, P.

Vydáno

23. 4. 2020

Nakladatel

Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií

Místo

Brno

ISBN

978-80-214-5867-3

Kniha

Proceedings I of the 26th Conference STUDENT EEICT 2020

Edice

1

Číslo edice

1

Strany od

345

Strany do

349

Strany počet

5

URL

BibTex

@inproceedings{BUT163729,
  author="Petra {Novotná}",
  title="Atrial Fibrillation Classification Using Deep Convolutional Network",
  booktitle="Proceedings I of the 26th Conference STUDENT EEICT 2020",
  year="2020",
  series="1",
  number="1",
  pages="345--349",
  publisher="Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií",
  address="Brno",
  isbn="978-80-214-5867-3",
  url="https://www.fekt.vut.cz/conf/EEICT/archiv/sborniky/EEICT_2020_sbornik_1.pdf"
}