Publication detail
On a Class of Functional Differential Equations with Symmetries
DILNA, N. FEČKAN, M. RONTÓ, A.
Original Title
On a Class of Functional Differential Equations with Symmetries
Type
journal article in Web of Science
Language
English
Original Abstract
It is shown that a class of symmetric solutions of scalar non-linear functional differential equations can be investigated by using the theory of boundary value problems. We reduce the question to a two-point boundary value problem on a bounded interval and present several conditions ensuring the existence of a unique symmetric solution.
Keywords
functional differential equation; argument deviation; periodic; antiperiodic; symmetry; two-point problem; unique solvability
Authors
DILNA, N.; FEČKAN, M.; RONTÓ, A.
Released
27. 11. 2019
Publisher
MDPI
Location
BASEL
ISBN
2073-8994
Periodical
Symmetry
Year of study
11
Number
12
State
Swiss Confederation
Pages from
1
Pages to
13
Pages count
13
URL
Full text in the Digital Library
BibTex
@article{BUT163758,
author="Nataliya {Dilna} and Michal {Fečkan} and András {Rontó}",
title="On a Class of Functional Differential Equations with Symmetries",
journal="Symmetry",
year="2019",
volume="11",
number="12",
pages="1--13",
doi="10.3390/sym11121456",
issn="2073-8994",
url="https://www.mdpi.com/2073-8994/11/12/1456"
}