Detail publikačního výsledku

On a Class of Functional Differential Equations with Symmetries

DILNA, N.; FEČKAN, M.; RONTÓ, A.

Originální název

On a Class of Functional Differential Equations with Symmetries

Anglický název

On a Class of Functional Differential Equations with Symmetries

Druh

Článek WoS

Originální abstrakt

It is shown that a class of symmetric solutions of scalar non-linear functional differential equations can be investigated by using the theory of boundary value problems. We reduce the question to a two-point boundary value problem on a bounded interval and present several conditions ensuring the existence of a unique symmetric solution.

Anglický abstrakt

It is shown that a class of symmetric solutions of scalar non-linear functional differential equations can be investigated by using the theory of boundary value problems. We reduce the question to a two-point boundary value problem on a bounded interval and present several conditions ensuring the existence of a unique symmetric solution.

Klíčová slova

functional differential equation; argument deviation; periodic; antiperiodic; symmetry; two-point problem; unique solvability

Klíčová slova v angličtině

functional differential equation; argument deviation; periodic; antiperiodic; symmetry; two-point problem; unique solvability

Autoři

DILNA, N.; FEČKAN, M.; RONTÓ, A.

Rok RIV

2020

Vydáno

27.11.2019

Nakladatel

MDPI

Místo

BASEL

ISSN

2073-8994

Periodikum

Symmetry-Basel

Svazek

11

Číslo

12

Stát

Švýcarská konfederace

Strany od

1

Strany do

13

Strany počet

13

URL

Plný text v Digitální knihovně

BibTex

@article{BUT163758,
  author="Nataliya {Dilna} and Michal {Fečkan} and András {Rontó}",
  title="On a Class of Functional Differential Equations with Symmetries",
  journal="Symmetry-Basel",
  year="2019",
  volume="11",
  number="12",
  pages="1--13",
  doi="10.3390/sym11121456",
  url="https://www.mdpi.com/2073-8994/11/12/1456"
}

Dokumenty