Publication detail
Long-time behavior for the Kirchhoff diffusion problem with magnetic fractional Laplace operator
ZHUO, J. LOPES, J. RADULESCU, V.
Original Title
Long-time behavior for the Kirchhoff diffusion problem with magnetic fractional Laplace operator
Type
journal article in Web of Science
Language
English
Original Abstract
We consider a Kirchhoff-type diffusion problem driven by the magnetic fractional Laplace operator. The main result in this paper establishes that infinite time blow-up cannot occur for the problem. The proof is based on the potential well method, in relationship with energy and Nehari functionals.
Keywords
Diffusion problem; Kirchhoff function; Magnetic fractional Laplacian; Nehari functional; Potential function
Authors
ZHUO, J.; LOPES, J.; RADULESCU, V.
Released
2. 4. 2024
ISBN
0893-9659
Periodical
APPLIED MATHEMATICS LETTERS
Year of study
150
Number
108977
State
United States of America
Pages from
1
Pages to
6
Pages count
6
URL
BibTex
@article{BUT187392,
author="Jiabin {Zhuo} and Juliana Honda {Lopes} and Vicentiu {Radulescu}",
title="Long-time behavior for the Kirchhoff diffusion problem with magnetic fractional Laplace operator",
journal="APPLIED MATHEMATICS LETTERS",
year="2024",
volume="150",
number="108977",
pages="6",
doi="10.1016/j.aml.2023.108977",
issn="0893-9659",
url="https://www-webofscience-com.ezproxy.lib.vutbr.cz/wos/woscc/full-record/WOS:001150024200001"
}