Detail publikačního výsledku

Long-time behavior for the Kirchhoff diffusion problem with magnetic fractional Laplace operator

ZHUO, J.; LOPES, J.; RADULESCU, V.

Originální název

Long-time behavior for the Kirchhoff diffusion problem with magnetic fractional Laplace operator

Anglický název

Long-time behavior for the Kirchhoff diffusion problem with magnetic fractional Laplace operator

Druh

Článek WoS

Originální abstrakt

We consider a Kirchhoff-type diffusion problem driven by the magnetic fractional Laplace operator. The main result in this paper establishes that infinite time blow-up cannot occur for the problem. The proof is based on the potential well method, in relationship with energy and Nehari functionals.

Anglický abstrakt

We consider a Kirchhoff-type diffusion problem driven by the magnetic fractional Laplace operator. The main result in this paper establishes that infinite time blow-up cannot occur for the problem. The proof is based on the potential well method, in relationship with energy and Nehari functionals.

Klíčová slova

Diffusion problem; Kirchhoff function; Magnetic fractional Laplacian; Nehari functional; Potential function

Klíčová slova v angličtině

Diffusion problem; Kirchhoff function; Magnetic fractional Laplacian; Nehari functional; Potential function

Autoři

ZHUO, J.; LOPES, J.; RADULESCU, V.

Rok RIV

2025

Vydáno

02.04.2024

ISSN

0893-9659

Periodikum

Applied Mathematics Letters

Svazek

150

Číslo

108977

Stát

Spojené státy americké

Strany od

1

Strany do

6

Strany počet

6

URL

BibTex

@article{BUT187392,
  author="Jiabin {Zhuo} and Juliana Honda {Lopes} and Vicentiu {Radulescu}",
  title="Long-time behavior for the Kirchhoff diffusion problem with magnetic fractional Laplace operator",
  journal="Applied Mathematics Letters",
  year="2024",
  volume="150",
  number="108977",
  pages="1--6",
  doi="10.1016/j.aml.2023.108977",
  issn="0893-9659",
  url="https://www-webofscience-com.ezproxy.lib.vutbr.cz/wos/woscc/full-record/WOS:001150024200001"
}