Přístupnostní navigace
E-application
Search Search Close
Publication detail
LEPÍK, J. ČIČATKA, M.
Original Title
Automating Antibiotic Susceptibility Testing with Machine Learning for Disk Diffusion Test Analysis
Type
article in a collection out of WoS and Scopus
Language
English
Original Abstract
Rapid and reliable antibiotic susceptibility testing (AST) methods are imperative in response to the escalating challenges of antimicrobial resistance. This study focuses on enhancing disk diffusion testing, a cornerstone of AST, by integrating machine learning and automation. Leveraging state-of-the-art object detection models, including EfficientDet and Mask R-CNN and image-processing approaches, our methodology addresses the need for standardized evaluation processes across diverse laboratory equipment while enabling the integration of mobile devices into the workflow, democratizing AST, and enhancing its accessibility. We utilize a comprehensive disk diffusion dataset for object detection models captured by devices like mobile phones and professional solutions. Additionally, our experiments lay the groundwork for a web application adopting a device-agnostic approach, promising improved accessibility and efficiency in AST analysis.
Keywords
antibiotic sensitivity testing, disk diffusion test, machine learning, image processing
Authors
LEPÍK, J.; ČIČATKA, M.
Released
25. 4. 2024
Publisher
Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií
Location
Brno
Pages from
20
Pages to
23
Pages count
4
URL
https://www.eeict.cz/eeict_download/archiv/sborniky/EEICT_2024_sbornik_1.pdf
BibTex
@inproceedings{BUT188474, author="Jakub {Lepík} and Michal {Čičatka}", title="Automating Antibiotic Susceptibility Testing with Machine Learning for Disk Diffusion Test Analysis", year="2024", pages="20--23", publisher="Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií", address="Brno", url="https://www.eeict.cz/eeict_download/archiv/sborniky/EEICT_2024_sbornik_1.pdf" }