Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikace
LEPÍK, J. ČIČATKA, M.
Originální název
Automating Antibiotic Susceptibility Testing with Machine Learning for Disk Diffusion Test Analysis
Typ
článek ve sborníku mimo WoS a Scopus
Jazyk
angličtina
Originální abstrakt
Rapid and reliable antibiotic susceptibility testing (AST) methods are imperative in response to the escalating challenges of antimicrobial resistance. This study focuses on enhancing disk diffusion testing, a cornerstone of AST, by integrating machine learning and automation. Leveraging state-of-the-art object detection models, including EfficientDet and Mask R-CNN and image-processing approaches, our methodology addresses the need for standardized evaluation processes across diverse laboratory equipment while enabling the integration of mobile devices into the workflow, democratizing AST, and enhancing its accessibility. We utilize a comprehensive disk diffusion dataset for object detection models captured by devices like mobile phones and professional solutions. Additionally, our experiments lay the groundwork for a web application adopting a device-agnostic approach, promising improved accessibility and efficiency in AST analysis.
Klíčová slova
antibiotic sensitivity testing, disk diffusion test, machine learning, image processing
Autoři
LEPÍK, J.; ČIČATKA, M.
Vydáno
25. 4. 2024
Nakladatel
Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií
Místo
Brno
Strany od
20
Strany do
23
Strany počet
4
URL
https://www.eeict.cz/eeict_download/archiv/sborniky/EEICT_2024_sbornik_1.pdf
BibTex
@inproceedings{BUT188474, author="Jakub {Lepík} and Michal {Čičatka}", title="Automating Antibiotic Susceptibility Testing with Machine Learning for Disk Diffusion Test Analysis", year="2024", pages="20--23", publisher="Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií", address="Brno", url="https://www.eeict.cz/eeict_download/archiv/sborniky/EEICT_2024_sbornik_1.pdf" }